

ENVIRONMENTAL PROTECTION INDUSTRIES

CERTIFIED MAIL

December 21, 2006

Mr. Mohammed Rahman Illinois Environmental Protection Agency Bureau of Land - #24 Leaking Underground Storage Tank Section 1021 North Grand Avenue East P.O. Box 19276 Springfield, Illinois 62794-9276

Re: Corrective Action Plan and Budget

LPC #0312255050 - Cook County Oak Park/ Chakkalapadavil, James

427 West Madison Street

LUST Incident #20050027, #901088

LUST Technical File

Dear Mr. Rahman:

Environmental Protection Industries (EPI), on behalf of James Chakkalapadavil, is submitting one (1) original and one (1) copy of the Corrective Action Plan (CAP) and Budget for the above-referenced LUST Incident.

Should you have any questions, please do not hesitate to contact us at your convenience.

Sincerely,

Environmental Protection Industries

RECEIVED

RELEASABLE

DEC 2 8 2006

FEB 21 2007

IEPA/BOL

REVIEWER MD

Enclosures: One (1) original and one (1) copy of the CAP & Budget

Cindy Panagiotopoulos

Project Manager

ENVIRONMENTAL PROTECTION INDUSTRIES

CORRECTIVE ACTION PLAN AND BUDGET

LPC #0312255050 - Cook County
Oak Park/ Chakkalapadavil, James
427 West Madison Street
LUST Incident #20050027, #901088

EPI Project # 041293

December 21, 2006

RECEIVED

DEC 2-8 2006

RELEASABLEBA/BOL

FEB 21 2007

REVIEWER MD

CORRECTIVE ACTION PLAN AND BUDGET

LPC #0312255050 - Cook County Oak Park/ Chakkalapadavil, James 427 West Madison Street LUST Incident #20050027, #901088

TABLE OF CONTENTS

D	SOIL	AND GROUNDWATER INVESTIGATION RESULTS	1
	D.1	Description of Investigation Activities Performed to Define Extent of Soil and/or Groundwater Contamination	1
	D.2	Analytical Results and Cleanup Objectives in Tabular Format	
	D.2 D.3	Laboratory Reports	
	D.4	Soil Boring Logs	
	D.5	Monitoring Well Logs	
	D.6	Site Maps	
E.	TEC	HNICAL INFORMATION	3
	E.1	A Discussion of how the CAP Shall Remediate the Release	3
	E.2	Sampling Parameters and Corresponding Remediation Objectives	
		(SROs)	3
	E.3	Basis for Sampling Parameters and Cleanup Objectives	3
	E.4	Media Sampling Plan	3
	E.5	Current and Future use of the Property	4
	E.6	Proposed Preventative, Engineering, and Institutional Controls	4
	E.7	Water Supply Well Survey	4
	E.8	Appendices	4
	E.9	Site Maps	
	E.10	Engineered Design Specifications	4
	E.11	A Description of Bench/Pilot Studies	6
	E.12	Cost Comparison Between Proposed Method Of Remediation and	
		other Methods Of Remediation	
	E.13	Proposed Tiered 2 and Tiered 3 Remediation Objectives	6
	E.14	Documentation for Alternative Technologies	
	E.15	Property Owner Summary Form	6
F	EXP	OSURE PATHWAY EXCLUSION	7
	F.1	A Description of the Tests to Be Performed in Determining Whether	
	T 0	The Following Requirements Will Be Met.	
	F.2	A Discussion Of How Any Exposure Pathways Are to Be Excluded	7

APPENDICES

Tab 1 IEPA Forms

Tab 2 Site Maps

USGS Topographical Map

Figure 1 Soil Boring/Monitoring Well Location Map

Figure 2 Extent of Soil Contamination Map

Figure 3 Extent of Groundwater Contamination Map

Figure 4 Projected Extent of Groundwater Contamination Map

Figure 5 Institutional Controls Map

Tab 3 Tables and Laboratory Reports

Table 1 Soil Analytical Results

Table 2 Groundwater Analytical Results

Tab 4 Supporting Information

Draft Highway Authority Agreement

Draft Property Owner Notification Letter

Sample ELUC

Village of Oak Park Groundwater Ordinance

Water Well Information

R26/S17 Modeling

Tab 5 Budget and Billing Information

OSFM Eligibility and Deductibility Determination Letter

Owner/Operator Budget Certification Form

Budget and Billing Form

D SOIL AND GROUNDWATER INVESTIGATION RESULTS

D.1 DESCRIPTION OF INVESTIGATION ACTIVITIES PERFORMED TO DEFINE EXTENT OF SOIL AND/OR GROUNDWATER CONTAMINATION

Site investigations and the proposed remedial activities described herein were conducted by Environmental Protection Industries (EPI) at the gas station facility located at 427 West Madison in Oak Park, Illinois (the Site, refer to Figure 1, Tab 2).

Two (2) 12,000-gallon gasoline Underground Storage Tanks (USTs) are currently located on the Site. The Site is listed as having two (2) LUST Incidents, #901088 and #20050027. Incident #901088 was reported as a gasoline release in April of 1990. There have been no IEPA reports (i.e. 20/45 Day Reports) submitted in connection with the release. No remedial activities are listed to have taken place since the Incident occurred and it is still listed as open. Incident #20050027 was assigned to the Site after a release was discovered during a subsurface investigation conducted on January 7, 2005.

Early Action Investigation (January 2005)

On January 7, 2005, two (2) soil borings, SB1 and SB4, were advanced on the Site during a subsurface investigation. While conducting this subsurface investigation, high PID readings were encountered in the soil samples collected. Based on that information, a release was reported to the Illinois Emergency Management Agency (IEMA) and Incident #20050027 was assigned to the Site. Soil samples were tested for Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) concentrations. Analytical results indicated that target analytes were detected at concentrations above the Tier 1 Soil Remediation Objectives (SROs) in the sample collected from soil boring SB1. The sample collected from SB4 did not contain any detectable concentrations of the target analytes.

Site Investigation (September and November 2005, March and July 2006)

On September 1, 2005, five (5) soil borings, SB102, SB105, SB106, SB107 and SB108, were advanced per the approved SIP dated April 6, 2005. Soil samples were collected and tested for BTEX and MTBE. The analytical results identified BTEX and/or MTBE constituents at concentrations above the IEPA Tier 1 SROs in the soil samples collected from all the soil borings.

On November 11, 2005, three (3) additional soil borings, SB101, SB103 and SB104 were advanced per the approved Amended SIP dated April 6, 2005. Soil samples were collected and tested for BTEX and MTBE. The analytical results identified no detectable concentration of target analytes in the soil samples collected from SB101 and SB103. The analytical results identified BTEX and MTBE constituents above the IEPA Tier 1 SROs in the soil samples collected from soil boring SB104.

On March 7, 2006, five (5) off-site soil borings, SB109 through SB113, were advanced adjacent to the site in the Right of Ways of Madison Street and Elmwood Avenue per the

approved Amended Stage 2 SIP dated February 10, 2006. Three (3) temporary wells were installed in the offsite soil borings SB110, SB112 and SB113. The analytical results identified no target analytes in the soil samples collected from SB109 through SB113. Temporary wells were installed however groundwater was not encountered in any of the three (3) temporary wells and therefore off-site groundwater sampling could not be conducted. Monitoring well MW6, which was installed by another consultant, located off-site in the right of way of Elmwood Avenue, was accessed and discovered to be completely dry and no groundwater sample could be obtained from that off-site location.

On July 6, 2006, four (4) off-site soil borings, SB114 through SB117, were advanced on the adjacent property located at 507 South Elmwood Avenue per the approved Stage 3 SIP dated May 12, 2006. Three (3) temporary wells were installed in soil borings SB115, SB116 and SB117. The analytical results identified no detectable concentrations of target analytes in the soil samples collected from any of the soil borings. The three temporary wells were all dry and therefore no groundwater samples were able to be collected.

For detailed information on the Site Investigation Activities, refer to the Site Investigation Completion Report (SICR), dated July 27, 2000.

Groundwater Investigation

On November 11, 2005, four (4) groundwater samples were collected from permanent monitoring wells, MW1 through MW4. The groundwater samples were analyzed for BTEX and MTBE. The groundwater analytical results indicated that BTEX and MTBE were not detected in the groundwater samples collected from MW1, MW2 and MW4. The groundwater sample collected from MW3 contained a Benzene concentration above the Tier 1 Groundwater Remediation Objectives for Class I and Class II Groundwater.

For detailed information on the Site Investigation Activities, refer to the Site Investigation Completion Report (SICR), dated July 27, 2006.

D.2 ANALYTICAL RESULTS AND CLEANUP OBJECTIVES IN TABULAR FORMAT (See Tab 3, Tables 1 and 2)

D.3 LABORATORY REPORTS

Provided for reference in Tab 3.

D.4 SOIL BORING LOGS

Refer to the Site Investigation Completion Report dated July 27, 2006.

D.5 Monitoring Well Logs

Refer to the Site Investigation Completion Report dated July27, 2006.

D.6 SITE MAPS

(See Tab 2)

E. TECHNICAL INFORMATION

E.1 A DISCUSSION OF HOW THE CAP SHALL REMEDIATE THE RELEASE

The results of the investigations indicate that soil and groundwater were impacted by the release from the USTs located on the Site. In evaluating the appropriate methods to use for the corrective actions, the Site location, adjacent properties, soil type, natural and manmade migration pathways, groundwater characteristics and site geology were considered.

Soil Remediation

EPI proposes the use of engineered barriers and institutional controls and a Highway Authority Agreement to eliminate the potential exposure to the detected constituents.

Groundwater Contamination

EPI proposes the use of the Oak Park Groundwater Ordinance and a Highway Authority Agreement with the Village of Oak Park for the identified groundwater contamination.

The results indicated that Toluene and Ethyl benzene groundwater contamination would remain within the property boundary. The Benzene contamination is projected to extend across the property boundary and into Elmwood Avenue and Madison Street. The MTBE contamination is projected to extend across the property boundaries and within an approximate radius of 330 feet. For detailed calculations and plume diagrams, please refer to the Site Investigation Completion Report dated July 27, 2006.

E.2 SAMPLING PARAMETERS AND CORRESPONDING REMEDIATION OBJECTIVES (SROS)

The sampling parameters for delineating the soil and groundwater contamination are BTEX and MTBE. The soil remediation objectives were selected in accordance with 35 Illinois Administrative Code (IAC) Part 742. Site contamination was compared to the most stringent IEPA Tier 1 SROs.

E.3 BASIS FOR SAMPLING PARAMETERS AND CLEANUP OBJECTIVES

The material released at the site was gasoline. The sampling parameters have been chosen in accordance with 35 IAC Section 732.310 (b), (c) and the proposed SROs have been chosen in accordance with 35 IAC Section 742 Appendix B, Tables A and B for soil and Table E for groundwater.

E.4 MEDIA SAMPLING PLAN

Not applicable.

E.5 CURRENT AND FUTURE USE OF THE PROPERTY

Currently the Site is a gas station that is in operation. The future use of the property is as a gasoline service station.

E.6 PROPOSED PREVENTATIVE, ENGINEERING, AND INSTITUTIONAL CONTROLS

Not applicable.

E.7 WATER SUPPLY WELL SURVEY

A water well survey was conducted for the purpose of identifying and locating all private, potable and community water supply wells within 2,500 feet of the UST systems. The primary sources contacted for the well survey were the Illinois State Water Survey (ISWS) and the Illinois State Geological Survey (ISGS). Included in this report is all water well information from the ISWS and ISGS within Township 39 North, Range 13 East, and Sections 7, 8, 17 and 18.

The ISWS survey of private community water supply wells identified zero well listings within a 2,500-foot radius of the Site. Ten (10) private well listings are located in unknown locations in Section 7 and three (3) private well listings in unknown locations in Section 17.

The ISGS database did not identify any municipal or commercial wells within a 2,500-foot radius of the Site.

The Water Well Location Map is provided in Figure 6, Tab 2. Well Data from the ISGS and ISWS are provided in Tab 8.

E.8 APPENDICES

- a. References and data sources report that are organized; and
- b. Field logs, well logs, and reports of laboratory analysis.

See Tab 4.

E.9 SITE MAPS

See Tab 2.

E.10 Engineered Design Specifications

EPI proposes the following approaches: 1) construction worker safety precaution as an institutional control for the Construction Worker Soil Inhalation Exposure Route; 2) the existing Site building and concrete pavement as engineered barriers for the Soil

Inhalation Exposure Routes; 3) an on-site groundwater use restriction will be placed on the Site for the Soil Component of Groundwater Ingestion and Groundwater Ingestion Exposure Routes; and 4) Highway Authority Agreement for contamination in the rightof-ways.

Engineered Barriers

The proposed on-site engineered barriers include an existing permanent building structure and concrete and asphalt pavement at least four (4) inches thick. Both barriers will meet the requirements of 35 IAC Part 742 Subpart K. Refer to Figure 4, Tab 2 for the engineered barrier areas.

Construction Worker Scenario

Development of a Site Specific Safety Plan for any future construction activities conducted in the areas of concern at the Site. Safety precautions will be implemented for any future construction activities commencing in the areas of concern. The precaution will ensure that the health of the construction worker is not threatened. The precaution will exclude all impacts present along the construction worker exposure scenario from further consideration at the Site.

Groundwater Ordinance

Since the groundwater modeling results indicated that the contaminated groundwater would migrate off-site to the adjacent properties, property notifications will be performed. A draft Property Owner Notification Letter is provided in Tab 4 for review.

The City of Oak Park currently has an approved Groundwater Ordinance, which will be used for the groundwater contamination that migrates off-site.

Environmental Land Use Control

An Environmental Land Use Control (ELUC) will be used as an institutional control to impose land use limitations and address off-site contamination cause by a release from the Site. A sample ELUC is provided for review in Tab 4.

Highway Authority Agreement

The soil contamination beneath the Right of Way, Madison Street and Elmwood Avenue, will be managed under the terms and conditions of a Highway Authority Agreement with the Village of Oak Park. A copy of the proposed Highway Authority Agreement is included in Tab 4 for your review.

The components of the investigations completed at the Site demonstrate that the residual constituent concentrations would not pose a threat to human health and/or the

environment. Potential exposure pathways will be eliminated from consideration through the use of proposed institutional controls and the establishment of the Highway Authority Agreement.

E.11 A DESCRIPTION OF BENCH/PILOT STUDIES

Not Applicable.

E.12 Cost Comparison Between Proposed Method Of Remediation and other Methods Of Remediation

Not Applicable.

E.13 Proposed Tiered 2 and Tiered 3 Remediation Objectives

Not Applicable.

E.14 DOCUMENTATION FOR ALTERNATIVE TECHNOLOGIES

Not Applicable.

E.15 Property Owner Summary Form

See Form in Tab 1.

IEPA FORMS

D

RECEIVED
DEC 2-8 2006
IEPA/BOL

The Agency is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 ILCS 5/4, 5/57 - 57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$50,000.00 for the violation and an additional civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/42). Any person who knowingly makes a false material statement or representation in any label, manifest, record, report, permit, or license, or other document filed, maintained or used for the purpose of compliance with Title XVI commits a Class 4 felony. Any second or subsequent offense after conviction hereunder is a Class 3 felony (415 ILCS 5/57.17). This form has been approved by the Forms Management Center.

Illinois Environmental Protection Agency Leaking Underground Storage Tank Program Corrective Action Plan

A.	Site	Identification	
	IEMA	Incident # (6- or 8-digit): _20050027): <u>0312255050</u>
	Site N	lame: Clark	
	Site A	ddress (Not a P.O. Box): 427 West Madison	
	City: _	Oak Park County: Cook	ZIP Code: 60302
	Leaki	ng UST Technical File	
B.	Site	Information	
	1.	Will the owner or operator seek reimbursement from the Underground Storage Tank Fund?	Yes 🕢 No 🗌
	2.	If yes, is the budget attached?	Yes 🗹 No 🗌
	3.	Is this an amended plan?	Yes 🗌 No 🗹
	4.	Identify the material(s) released: Gasoline	
	5.	This Corrective Action Plan is submitted pursuant to:	RECEIVED
		a. 35 III. Adm. Code 731.166	□ DEC 2-8 2006
		The material released was: -petroleum -hazardous substance (see Environmental Protection Act Section 3.215)	□ IEPA/BOL
		b. 35 III. Adm. Code 732.404	
		c. 35 III. Adm. Code 734.335	\square
C.	Prop	posed Methods of Remediation	
	1.	Soil Engineered Barrier; Highway Authority Agreement (H	AA); Health and Safety Plan
	2.	Groundwater Groundwater Ordinance; Property Owner No	tifications; HAA SEWC
D.		and Groundwater Investigation Results (for incider only or 732 that were classified using Method One or Two, if not	
	Provi	de the following:	
	1.	Description of investigation activities performed to define the groundwater contamination;	e extents of soil and/or
	2.	Analytical results, chain-of-custody forms, and laboratory ce	rtifications;

- 3. Tables comparing analytical results to applicable remediation objectives;
- Boring logs;
- 5. Monitoring well logs; and
- 6. Site maps meeting the requirements of 35 III. Adm. Code 732.110(a) or 734.440 and showing:
 - a. Soil sample locations;
 - b. Monitoring well locations; and
 - c. Plumes of soil and groundwater contamination.

E. Technical Information - Corrective Action Plan

Provide the following:

- 1. Executive summary identifying the objectives of the corrective action plan and the technical approach to be utilized to meet such objectives;
 - a. The major components (e.g., treatment, containment, removal) of the corrective action plan;
 - b. The scope of the problems to be addressed by the proposed corrective action; and
 - c. A schedule for implementation and completion of the plan;
- 2. Identification of the remediation objectives proposed for the site;
- 3. A description of the remedial technologies selected:
 - a. The feasibility of implementing the remedial technologies;
 - Whether the remedial technologies will perform satisfactorily and reliably until the remediation objectives are achieved; and
 - A schedule of when the technologies are expected to achieve the applicable remediation objectives;
- 4. A confirmation sampling plan that describes how the effectiveness of the corrective action activities will be monitored during their implementation and after their completion;
- 5. A description of the current and projected future uses of the site;
- 6. A description of engineered barriers or institutional controls that will be relied upon to achieve remediation objectives:
 - a. an assessment of their long-term reliability;
 - b. operating and maintenance plans; and
 - c. maps showing area covered by barriers and institutional controls;
- The water supply well survey:
 - Map(s) showing locations of community water supply wells and other potable wells and the setback zone for each well;
 - b. Map(s) showing regulated recharge areas and wellhead protection areas;
 - c. Map(s) showing the current extent of groundwater contamination exceeding the most stringent Tier 1 remediation objectives;
 - d. Map(s) showing the modeled extent of groundwater contamination exceeding the most stringent Tier 1 remediation objectives;
 - e. Tables listing the setback zone for each community water supply well and other potable water supply wells;
 - f. A narrative identifying each entity contacted to identify potable water supply wells, the name and title of each person contacted, and any field observations associated with any wells identified; and
 - g. A certification from a Licensed Professional Engineer or Licensed Professional Geologist that the survey was conducted in accordance with the requirements and that documentation submitted includes information obtained as a result of the survey (certification of this plan satisfies this requirement);

- Appendices:
 - a. References and data sources report that are organized; and
 - b. Field logs, well logs, and reports of laboratory analyses;
- 9. Site map(s) meeting the requirements of 35 III. Adm. Code 732.110(a) or 734.440;
- 10. Engineering design specifications, diagrams, schematics, calculations, manufacturer's specifications, etc.;
- 11. A description of bench/pilot studies;
- 12. Cost comparison between proposed method of remediation and other methods of remediation;
- 13. For the proposed Tier 2 or 3 remediation objectives, provide the following:
 - a. The equations used;
 - b. A discussion of how input variables were determined;
 - c. Map(s) depicting distances used in equations; and
 - d. Calculations;
- 14. Provide documentation to demonstrate the following for alternative technologies:
 - The proposed alternative technology has a substantial likelihood of successfully achieving compliance with all applicable regulations and remediation objectives;
 - b. The proposed alternative technology will not adversely affect human health and safety or the environment;
 - The owner or operator will obtain all Illinois EPA permits necessary to legally authorize use of the alternative technology;
 - d. The owner or operator will implement a program to monitor whether the requirements of subsection (14)(a) have been met;
 - e. Within one year from the date of Illinois EPA approval, the owner or operator will provide to the Illinois EPA monitoring program results establishing whether the proposed alternative technology will successfully achieve compliance with the requirements of subsection (14)(a); and
 - f. Demonstration that the cost of alternative technology will not exceed the cost of conventional technology and is not substantially higher than at least two other alternative technologies, if available and technically feasible.
- 15. Property Owner Summary form.

F. Exposure Pathway Exclusion

Provide the following:

- A description of the tests to be performed in determining whether the following requirements will be met:
 - Attenuation capacity of the soil will not be exceeded for any of the organic contaminants;
 - b. Soil saturation limit will not be exceeded for any of the organic contaminants;
 - Contaminated soils do not exhibit any of the reactivity characteristics of hazardous waste per 35 III. Adm. Code 721.123;
 - d. Contaminated soils do not exhibit a pH \leq 2.0 or \geq 12.5; and
 - e. Contaminated soils which contain arsenic, barium, cadmium, chromium, lead, mercury, or selenium (or their associated salts) do not exhibit any of the toxicity characteristics of hazardous waste per 35 Ill. Adm. Code 721.124.
- 2. A discussion of how any exposure pathways are to be excluded.

G. **Signatures**

All plans, budgets, and reports must be signed by the owner or operator and list the owner's or operator's full name, address, and telephone number.

UST Owner or Operator	Consultant
Name: Individual	Company: Environmental Protection Industries
Contact: James Chakkalapadavil	Contact: Cindy Panagiotopoulos
Address: 772 North Adele	Address: 16650 South Canal Street
City: Elmhurst	City: South Holland
State: IL	State: L
ZIP Code: 60126	ZIP Code: 60473
Phone: (630) 674-9312	Phone: (708) 225-1115
Signature:	Signature: Cindy Panay
Date: 11/21/06	Date: 12/21(06 0

I certify under penalty of law that all activities that are the subject of this plan were conducted under my supervision or were conducted under the supervision of another Licensed Professional Engineer or Licensed Professional Geologist and reviewed by me; that this plan and all attachments were prepared under my supervision; that, to the best of my knowledge and belief, the work described in this plan has been completed in accordance with the Environmental Protection Act [415 ILCS 5], 35 III. Adm. Code 731, 732 or 734, and generally accepted standards and practices of my profession and that the information presented is accurate and complete. I am aware there are significanTECEIVED penalties for submitting false statements or representations to the Illinois EPA, including but not limited to fines, imprisonment, or both as provided in Sections 44 and 57.17 of the Environment 8 2006 Protection Act [415 ILCS 5/44 and 57.17].

Licensed Professional Engineer or Geologist L.P.E. or L.P.G. Seal

IEPA/BOL

Name: Anthony Negri
Company: Environmental Protection Indust.
Address: 16650 South Canal Street
City: South Holland
State: IL
ZIP Code: 60473
Phone:(708) 225-1115
III. Registration No.: <u>062-05366</u>
License Expiration Date: 1/30/47
Signature: Mary Mani
Date: /2/53/06

The Agency is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 ILCS 5/4, 5/57 - 57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$50,000.00 for the violation and an additional civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/42). Any person who knowingly makes a faise material statement or representation in any label, maintained or used for the purpose of compliance with Title XVI commits a Class 4 felony. Any second or subsequent offense after conviction hereunder is a Class 3 felony (415 ILCS 5/57.17). This form has been approved by the Forms Management Center.

Illinois Environmental Protection Agency Leaking Underground Storage Tank Program Property Owner Summary

A.	Site lo	dentification	
	IEMA Ir	ncident # (6- or 8-digit): IEPA LPC# (10-digit):0312255050	
	Site Na	me: Clark	
	Site Ad	dress (Not a P.O. Box): 427 West Madison	
	City: C	oak Park County: Cook ZIP Code: 603	02
	Leaking	g UST Technical File	
	may no propert No Furt	ered barriers, institutional controls, and other use restrictions, if any, proposed to be implemented without approval by the title holder(s) of record for the abovery or the agent(s) of such person(s). These controls and restrictions will be identher Remediation (NFR) Letter, which must be recorded in the chain of title for to maintain these controls is grounds for voidance of the NFR Letter.	-named tified in the
В.	Preve Limita	entive, Engineering, and Institutional Controls and Land Use ations	RECEIVED
	The foll	lowing controls and restrictions are proposed for the above-named site:	DEC 2-8 2006
		Industrial/commercial land use limitation;	IEPA/BOL
		On-site groundwater restriction prohibiting the use of groundwater beneath the potable water supply;	e site as a
	Z	An engineered barrier: ☑ building, ☑ asphalt/concrete, or ☐ other	
		(description)	;
	abla	Groundwater ordinance: with a MOU, without a MOU;	
	\square	Construction worker caution notification;	
	\square	Other: ELUC	;
		None (There are no proposed institutional controls other than the NFR Letter.))

I hereby affirm that I have reviewed the attached report entitled Corrective Ac	tion Plan and
Budget and dated <u>09/25/06</u> , and deted <u>noglations</u> , and deted <u>noglations</u> , and determs and conditions set forth therein, including any land use limitations, that a	d that I accept the
own. I further affirm that I have no objection to the recording of a No Further F	Remediation Letter
containing the terms and conditions identified in the report upon the property t	own.
or and a second of	
Name of Property Owner: <u>James Chakkalapadavil</u>	
Name of Officer or Agent:	
Atalian Address 770 North Adole	
Mailing Address: _772 North Adele	
City: Elmhurst	
State: IL	
otate. 13	
ZIP Code: _60126	
Signature:	
Signature:	
Site Description	
·	
Real Estate Tax/Parcel Index Number: 16-18-206-014	
Legal Description of Site (must be provided on a separate sheet)	RECEIVED
	DEO 0
	DEC 2-8 2006
	DLC 2 6 2000

SITE MAPS

USGS TOPOGRAPHICAL MAP

Site Location USGS 7.5 Minute Topographic Map River Forest Quadrangle

0 ½ 1

FIGURE 1 SOIL BORING/MONITORING WELL LOCATION MAP

FIGURE 2 EXTENT OF SOIL CONTAMINATION MAP

FIGURE 3 EXTENT OF GROUNDWATER CONTAMINATION MAP

FIGURE 4 PROJECTED EXTENT OF GROUNDWATER CONTAMINATION MAP

FIGURE 5 INSTITUTIONAL CONTROLS MAP

ANALYTICAL TABLES SOIL AND GROUNDWATER RESULTS

TABLE 1. Soil Analytical Results

James Chakkalapadavil Client: 427 West Madison, Oak Park, IL Site:

Matrix: Soil

Sampling Date: 1/7/05 Laboratory: GLA

> 20050027 # Incident #:

Residential Industrial/Commercial Construction Worker Class Clas	Residential Industrial/Commercial Construction Worker Class I Class II Class II Class II a 12 0.8 100 1.6 2,300 2.2 0.03 0.17 b 16,000 650 410,000 650 410,000 58 13 19 b 7,800 400 200,000 320 410,000 58 13 19 b 160,000 320 1,000,000 320 410,000 320 150 150 150	Chemical		Exposu	Exposure Route-Specific \	pecific Va	Values*		Soil Component of GW Ingestion Route*		SB1	SB4						
Carrected Residential Industrial/Commercial Construction Worker Class Class 1772005 11	Calcal			Fxnosi	re Route-S	pecific Va	lues*		GW Ingest			SB4		<u>. </u>				
Residential Industrial/Commercial Construction Worker Class Clas	The Residential Industrial/Commercial Construction Worker Class Ingestion Inhalation Inhalati	mical		2		_		-	Route*						1			
Activation Inhabition Inh	Transform Industrian Indu	3 0			T. descention!		Construction		-		7/2005 1	17/2005						
Ingestion Inhalation Inha	Ingestion Inhalation Inha	שַ	Keside	mtiat	mansirian	-1-			Class I Cla	=	187	ă						
12 0.8 100 1.6 2,300 2.2 0.03 0.17 16.9	12 0.8 100 1.6 2.300 2.2 0.03 1.2 1.		ingoetion	Inhalation	Ingestion	_	Ingestion Inf	nalation			4-0	0		-	-		2 2 2	
a 12 0.8 100 1.6 2,300 2.2 0.03 0.17 16.9 b 16,000 650 410,000 650 410,000 650 410,000 58 13 19 34.7 b 7,800 400 200,000 400 20,000 58 13 19 34.7 b 7,800 400 200,000 400 20,000 58 150 150 185	a 12 0.8 100 1.6 2.300 2.2 0.03 b 16,000 650 410,000 650 410,000 400 20,000 42 12 b 7,800 400 200,000 400 20,000 58 13 b 160,000 320 1,000,000 320 410,000 320 150		III gesulli		8	186.5									7. W. E.			
a 12 0.8 100 1.6 2,300 2.2 0.03 0.17 16.9 b 16,000 650 410,000 650 410,000 42 12 29 55.2 b 7,800 400 200,000 400 20,000 58 13 19 34.7 b 7,800 400 200,000 400 20,000 58 13 19 34.7	a 12 0.8 100 1.6 2,300 2.2 0.03 b 16,000 650 410,000 650 410,000 42 12 b 7,800 400 200,000 400 20,000 58 13 b 160,000 320 1,000,000 320 410,000 320 150								_	-	- 0.0		_					
b 16,000 650 410,000 650 410,000 650 410,000 42 12 29 55.2 b 7,800 400 200,000 400 20,000 58 13 19 34.7 b 7,800 400 200,000 400 20,000 150 150 150 185	b 16,000 650 410,000 650 410,000 650 410,000 40 20,000 58 13 b 7,800 400 200,000 400 20,000 58 13 b 160,000 320 1,000,000 320 410,000 320 150	8	12	0.8	90	1.6		2.2			6.0	2						
b 16,000 650 410,000 650 410,000 42 12 29 53.2 b 7,800 400 200,000 400 20,000 58 13 19 34.7 b 7,800 400 200,000 400 20,000 58 13 19 34.7	b 16,000 650 410,000 650 410,000 450 410,000 450 12 b 7,800 400 200,000 400 20,000 58 13 b 160,000 320 1,000,000 320 410,000 320 150		7						ç		200	2		_	_	_		
b 7,800 400 200,000 400 20,000 58 13 19 34.7 b 10,000 320 150 150 185 185	b 7,800 400 200,000 400 20,000 58 13 b 160,000 320 1,000,000 320 410,000 320 150	O	16,000	650	410,000	650	410,000	42	12	8	77.00	2						
6 7,800 400 200,000 400 20,000 320 150 150 185	b 7,800 400 200,000 400 20,000 320 150 150				000	700	00000	22	13	19	34.7	9						
320 150 150 185	b 160,000 320 1,000,000 320 410,000 320 150	٥	7,800	400	200,000	400	20,000	3	2	2	+							_
	160,000	4	000	5	4 000	320		320	_	150	185	2	_		_	_	-	

Illinois EPA Tier 1 Soil Remediation Objectives (ROs) for Residential and Industrial/Commercial Properties; (35 IAC 742, Appendix B, Table A and Appendix B, Table B)

nd = None Detected nro = No Remediation Objective na = Not Analyzed All results in parts per million (mg/Kg) unless noted otherwise

Results in Bold/Shaded indicate concentrations exceeding most stringent Tier 1 ROs a = Carcinogenic b = Noncarcinogenic

TABLE 1. Soil Analytical Results (BTEX, MTBE)

James Chackalapadavil Client: 427 West Madison, Oak Park Site:

20050027

LUST Incident #

Laboratory: GLA

Matrix: Soil

Sampling Date: See Below

Chemical		Exposu	Exposure Route-Specific Values*	pecific Va	lues*		Soil Com GW Ingest	Soil Component of GW Ingestion Route*	SB102	SB102 SB102 SB105 SB105 SB106 SB106 SB107 SB107	SB105	SB105	SB106	SB106	SB107	SB107
Name	Residential	ntial	Industrial/Commercial	mmercial	ථ	nstruction Worker	Class I	Class II	4-6'	12-14'	4-6'	12-14'	4-6'	12-14'	.8-9	12-14'
	Ingestion	Inhalation	Ingestion Inhalation Ingestion Inhalation Ingestion	Inhalation	Ingestion	Inhalation			9/1/05	9/1/05	9/1/05	9/1/05	9/1/05	9/1/05	9/1/05	9/1/05
BTEX																
Benzene	12	0.8	100	1.6	2,300	2.2	0.03	0.17	0.571	0.095	18.7	4.19	19.1	3.80	1.47	1.45
Toluene	16,000	650	410,000	650	410,000	42	12	29	QN	Q	37.8	10.6	16.7	1.57	0.397	1.17
Ethylbenzene	7,800	400	200,000	400	20,000	58	13	19	QN.	QN	29.0	9.79	46.9	6.58	10.3	4.35
Xylenes (total)	160,000	320	1,000,000	320	410,000	320	150	150	QN	QN	131.0	22.7	267.0	20.1	26.6	4.28
Methyl tert buytl ether	780	8,800	20,000	8,800	2,000	140	0.32	0.32	0.41	Q	3.24	1.06	1.06 - 8.05	0.998	QN	1.20

Illinois EPA Tier 1 Soil Remediation Objectives (ROs) for Residential and Industrial/Commercial Properties; (35 IAC 742, Appendix B, Table A and Appendix B, Table B)

All results in parts per million (mg/Kg) unless noted otherwise

a = Carcinogenic b = Noncarcinogenic

Results in Bold/Shaded indicate concentrations exceeding most stringent Tier 1 ROs

TABLE 1. Soil Analytical Results (BTEX,MTBE)

Sampling Date: See Below

Laboratory: TA

James Chackalapadavil Client:

427 West Madison Avenue, Oak Park Site:

Matrix: Soil 20050027 LUST Incident #:

Chemical		Exposu	Exposure Route-Specific Value:	pecific Va	lues*		Soil Component of GW Ingestion Route*	on Route*	SB108	SB108	SB108 SB108 SB101 SB101 SB103 SB103 SB104 SB104	SB101	SB103	SB103	SB104 (3B104
Name	Resid	Residential	Industrial/Commercial	mmercial	Constructio	nstruction Worker	Class I	Class II	.8-9	12-14	4-6	8-10	4-6'	10-12	4-6,	.8-9
	Ingestion	Inhalation	Ingestion Inhalation Ingestion Inhalation Ing	Inhalation	estion	Inhalation		i	9/1/05	9/1/05	11/11/05	11/11/05	11/11/05	11/11/05	11/11/05	11/11/05
BIEX														100		1 1 40 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Benzene	12	9.0	100	1.6	2,300	2.2	0.03	0.17	11.2	0.206	Q	Q	QN	N N	5.81	12.5
Toluene	16,000	650	410,000	650	410,000	42	12	29	0.460	QN	ND	Q.	Q.	ND	1.77	1.63
Ethylbenzene	7,800	400	200,000	400	20,000	58	13	19	59.0	0.463	QN	S	2	Q	39.7	3.03
Xylenes (total)	160,000	320	1,000,000	320	410,000	320	150	150	53.6	1.24	2	Q	Q.	2	4.40	0.971
Methyl tert buytl ether	780	8,800	20,000	8 800	2,000	140	0.32	0.32	\$ 2.02 °	QN	Q	Q	Q	QN	0.507	2.25

Illinois EPA Tier 1 Soil Remediation Objectives (ROs) for Residential and Industrial/Commercial Properties; (35 IAC 742, Appendix B, Table A and Appendix B, Table B)

All results in parts per million (mg/Kg) unless noted otherwise

nro = No Remediation Objective na = Not Analyzed nd = None Detected

a = Carcinogenic b = Noncarcinogenic

Results in Bold/Shaded indicate concentrations exceeding most stringent Tier 1 ROs

TABLE 1. Soil Analytical Results (BTEX,MTBE)

Sampling Date: 3/7/06

Laboratory: TA

Matrix: Soil

Client: James Chackalapadavil

Site: 427 West Madison Avenue, Oak Park

20050027

LUST Incident #:

SB109 SB109 SB110 SB110 SB111 SB112 SB112 12-14 g. ы 3 nd ŋ 4-6' ы 5 Б Б ā 12-14 2 Ы Б Ы g 8-9 힏 п Б 5 2 10-12 р 2 пd Б 멀 8-9 В pu 2 2 Б 12-14, 힏 Ы В Ы 2 4-6 2 р Б 2 ρ Soil Component of GW Ingestion Route* Class i Class II 0.32 150 0.17 29 6 0.03 0.32 150 73 12 Ingestion Inhalation Ingestion Inhalation Construction Worker 140 320 2.2 28 42 410,000 410,000 20,000 2,300 2,000 Exposure Route-Specific Values* Industrial/Commercial 8,800 650 400 320 1.6 1,000,000 410,000 200,000 20,000 100 Ingestion Inhalation 8,800 320 400 650 0.8 Residential 160,000 16,000 7,800 7 Ъ ٩ ما Methyl tert buytl ether Chemical Name Xylenes (total) Ethylbenzene BTEX Benzene Foluene

Illinois EPA Tier 1 Soil Remediation Objectives (ROs) for Residential and Industrial/Commercial Properties; (35 IAC 742, Appendix B, Table A and Appendix B, Table B)

All results in parts per million (mg/Kg) unless noted otherwise

nd ≈ None Detected nro ≈ No Remediation Objective na = Not Analyzed

a = Carcinogenic b = Noncarcinogenic

Results in Bold/Shaded indicate concentrations exceeding most stringent Tier 1 ROs

TABLE 1. Soil Analytical Results (BTEX,MTBE)

James Chackalapadavil Client: 427 West Madison Avenue, Oak Park Site:

20050027

LUST Incident #:

Sampling Date: 3/7/06

Laboratory: TA

Matrix: Soil

Chemica		Exposu	Exposure Route-Specific Values*	pecific Va	lues*		Soil Component of SB113 SB113	conent of on Route*	SB113 (\$B113				
Name	Resid	Residential	Industrial/Commercial	-	Construction Worker	1	Class I	Class II	6-8	12-14.				
	Ingestion	Inhalation	Ingestion Inhalation Ingestion Inhalation	Inhalation	Ingestion	Inhalation								
BTEX														
Benzene	12	0.8	100	1.6	2,300	2.2	0.03	0.17	pu	рu				
Toluene	16,000	650	410,000	650	410,000	42	12	29	pu	pu				
Ethylbenzene	7,800	400	200,000	400	20,000	58	13	19	pu	pu				
Xylenes (total)	160,000	320	1,000,000	320	410,000	320	150	150	pu	0.321	-			
Methyl tert buytl ether	780	8,800	20,000	8,800	2,000	140	0.32	0.32	pu	nd			_	_
			Officiates to a first 1-31-41-51-50 201-500			l Parent	AL OF IAC 7A	in Annough	JAPE	Table A and Amendia B Table A and Amendia B Table B	JACT O VICE	á		

Illinois EPA Tier 1 Soit Remediation Objectives (ROs) for Residential and Industrial/Commercial Properties; (35 IAC 742, Appendix B, Table A and Appendix B, Table B)

All results in parts per million (mg/Kg) unless noted otherwise

nd = None Detected nro = No Remediation Objective na = Not Analyzed

a = Carcinogenic b = Noncarcinogenic

Results in Bold/Shaded indicate concentrations exceeding most stringent Tier 1 ROs

James Chackalapadavii Client:

427 West Madison Avenue, Oak Park Site:

20050027

LUST Incident #:

Sampling Date: 7/6/06

Laboratory: TA

LUST Incident #:	20050027	27			:									Matrix: Soil	Soil	
Chemical		Exposi	Exposure Route-Specific Values*	pecific Va	alues*		Soil Component of GW Ingestion Route*		SB114	SB114	SB114 SB114 SB115 SB116 SB116 SB117 SB117	SB115	SB116	SB116	SB117	SB117
Name	Re	Residential	Industrial/Commercial	mmercial	Construction Worker	on Worker	Class	Class II	2-4.	8-10.	4-6	10-12	4-6	10-12	4.6'	10.12
· · · · · · · · · · · · · · · · · · ·	Ingestio	Ingestion Inhalation Ingestion Inhalation Ingestion	Ingestion	Inhalation	Ingestion	Inhalation					1				Ť	2
BIEX														_		
Benzene	12	0.8	100	1.6	2,300	2.2	0.03	0.17	ри	nd	nd	рц	pu	nd	Pu	190
Toluene	16,000	650	410,000	650	410,000	42	12	29	pu	pu	p g	pu	nd	pu	pu	pu
Ethylbenzene ^b	7,800	400	200,000	400	20,000	58	13	19	Du.	pu	g	pu	Pg.	pu	2	JQ.
Xylenes (total)	160,000	320	1,000,000	320	410,000	320	150	150	pu	nd	pu	pu	pu	nd	밑	pu
Methyl tert buytl ether	780	8,800	20,000	8,800	2,000	140	0.32	0.32	pu	20	pu	pu	pu	2	pu	pu

^{&#}x27;Illinois EPA Tier 1 Soil Remediation Objectives (ROs) for Residential and Industrial/Commercial Properties; (35 IAC 742, Appendix B, Table A and Appendix B, Table B)

All results in parts per million (mg/Kg) unless noted otherwise

nd = None Detected nro = No Remediation Objective na = Not Analyzed

a = Carcínogenic b = Noncarcinogenic

Results in Bold/Shaded indicate concentrations exceeding most stringent Tier 1 ROs

TABLE 2. Groundwater Analytical Results

Client: James Chakkalapadavil

Site: 427 West Madison, Oak Park, IL

LUST Incident #: 20050027

Sampling Date: 11/11/05

Laboratory: TA

Matrix: Water

								ĺ		}-		1
Chemical	GW RO (mg/L)*	(mg/L)*	MW1 MW2	MW2	MW3	MW4						
Name	Class I Class II	Class II							_			
BTEX												30. SE
Benzene	0.005	0.025	N	S	0.901	QN						
Toluene	1.0	2.5	QN	ND	0.00643	ND			-	-		
Ethylbenzene	0.7	1.0	ND	2	0.691	ND			 			1_
Xylenes (total) b	10.0	10.0	S	2	0.201	QN						
8 4 4 4 5 1 1 4 5 1 1 4 1 5 1 5 1 5 1 5 1	0.07	0.07	S	CZ	0.00725	0.006	_		 	_	_	

All results in parts per million (mg/L) unless noted otherwise

nd = None Detected nro = No Remediation Objective na = Not Analyzed

a = Carcinogenic b = Noncarcinogenic

SUPPORTING INFORMATION

DRAFT HIGHWAY AUTHORITY AGREEMENT

Site PIN: #16-18-206-014

TIERED APPROACH TO CORRECTIVE ACTION RIGHT-OF-WAY AGREEMENT

This Agreement is entered into this	day of	2007	pursuant to
the Environmental Protection Act ("Act"),	35 IL Admin.	Code Section 742.	1020 by and
among James Chakkalapadavil ("Owner")			
as "Owner/Operator," and the Village of O	ak Park ("City"), as follows:	

1. This Agreement is not binding on the Village until it is executed by a duly authorized representative of City, and prior to execution, this Agreement constitutes an offer by Owner/Operator. The duly authorized representatives of Owner and Operator have signed this Agreement, and this Agreement is binding upon them, their successors and assigns.

2. Owner/Operator stipulates:

- a. Owner/Operator is pursing corrective action at a Site and in the right-of-way adjacent to the Site located at 427 West Madison Street, Oak Park, Illinois ("Site"). Site is legally described in Attachment A.
- b. The right-of-way adjacent to the Site, described in Attachment B, is subject to this Agreement and is possibly impacted with contaminants from a release at the Site.
- c. Attached as Attachment C is a site map showing the known and probable area(s) of contaminant impacted soil and groundwater in the right-of-way where, at the time of this Agreement, contaminants exceed the Tier 1 residential remediation objectives under the Act and 35 Ill. Admin. Code Section 742. Also attached as Attachment D is a table showing the concentration of contaminants in soil and/or groundwater within the area described in Attachment B and showing the applicable Tier 1 soil and groundwater remediation objectives for residential property that are exceeded.
- d. The corrective action is for a confirmed release of petroleum from an underground storage tank at the Site.
- e. The Illinois Emergency Management Agency has assigned incident number #20050027 to the Site.

- f. Owner/Operator has requested risk-based, site-specific soil and/or groundwater remediation objectives from the Illinois Environmental Protection Agency (Illinois EPA") under the Act and 35 Ill. Admin. Code Section 742.
- g. Under 35 Ill. Admin. Code 742.1020, the use of risk-based, site-specific remediation objectives in the right-of-way require this Agreement, in lieu of active remediation of the contaminant-impacted soil and groundwater.
- 3. The Village stipulates that it holds the right-of-way described in Attachment B in trust for the public and has jurisdiction over the right-of-way.
- 4. The parties stipulate that:
 - a. This Agreement is intended to meet the requirements of the Illinois Pollution Control Board ("Board") regulations for such Agreements.
 - b. This Agreement shall be recorded by the Owner/Operator at its expense along with the Illinois EPA's "No Further Remediation" determination with the Cook County Recorder of Deeds. The Owner/Operator will similarly record any attachments, addendums, or alterations to this Agreement. Within thirty (30) days of such recording with the Cook County Recorder of Deeds, the Owner/Operator shall provide the Village a copy of the Agreement that has been stamped by the Cook County Recorder of Deeds to indicate that it has been recorded with that office.
 - c. This Agreement shall be null and void should the Illinois EPA not approve it, or should it not be recorded along with the Illinois EPA's "No Further Remediation" determination, or should the Village not review and approve the "No Further Remediation" determination for the Site as it applies to the right-of-way identified in Attachment B.
- 5. The Village agrees that it will prohibit by ordinance the use of groundwater that is contaminated at levels above Tier 1 Residential Remediation Objectives beneath its right-of-way identified in Attachment B as a potable or other domestic supply of water. The Village further agrees that it will limit access to soil as described herein under the right-of-way described in Attachment B that is contaminated from the release at levels above the Tier 1 residential remediation objectives, and by requiring applicants for a public way work permit in the right-of-way described in Attachment B to consult the Village before obtaining a permit.
 - a. Where the pavement in the right-of-way is to be considered an engineered barrier, the Owner/Operator agrees to reimburse the Village for maintenance activities requested by Owner/Operator. Except for ordinary maintenance performed on Village roadways, the Village does not agree to maintain the right-of-way, nor does it guarantee that the right-of-way will continue as a roadway or that the right-of-way will always be maintained as an engineered barrier.

- b. This Agreement does not in any way limit the City's authority to construct, reconstruct, repair or maintain and operate a right-of-way upon the property identified in Attachment B or to allow to others to do the same. To that extent, the Village reserves the right to identify, investigate, and remove contaminated soil and/or groundwater above Tier 1 residential remediation objectives from the right-of-way identified in Attachment B and to dispose of them as it deems appropriate in accordance with applicable environmental regulations so as to avoid causing a further release of the contaminants and to protect human health and the environment. The Owner/Operator shall reimburse the actual costs incurred by the Village or others in so identifying, investigating, removing, storing, handling or disposing of contaminated soil and/or groundwater, and it shall not be a defense for Owner/Operator that those costs were not consistent with or required by Board or United States Environmental protection Agency regulations, guidelines or policies. Prior to incurring any such costs, and unless there is an urgent reason otherwise, the Village shall first give Owner/Operator thirty days notice and an opportunity to remove or dispose of contaminated soil and/or groundwater, at Owner/Operator's cost, to the extent necessary for the City's work. Such removal and disposal shall be in accordance with all applicable laws and regulations. Failure to give this opportunity to Owner/Operator shall not be a defense to a claim for reimbursement or that the work should not have been done. There is a rebuttal presumption that the contamination found in the right-of-way described in Attachment B arose from the release of contaminants at the Site. Should Owner/Operator not reimburse the costs identified here, this Agreement shall be null and void in addition to such other remedies as may be available to the Village by law.
- 6. The Owner/Operator agrees to indemnify and hold harmless the City, its agents and employees, and other entities using the right-of-way by a permit issued by the City, for all obligations asserted against or costs incurred by them associated with the release of contaminants of concern as described in Attachments C and D.
- 7. Violations of the terms of this Agreement by owner/Operator, or its successor(s) in interest, may be grounds for voidance of this Agreement as a Highway Authority Agreement.
- 8. No violation of a permit by a third party shall constitute a breach of this Agreement by the City. Owner/Operator also agrees that its personnel, if any, at the Site will exercise due diligence in notifying those accessing contaminated soil in the right-of-way of their rights and responsibilities under this Agreement.
- 9. Should the Village breach this Agreement, Owner/Operator's sole remedy is for an action for damages in the Circuit Court of Cook County. Any and all claims for damages against the City, its agents, contractors, employees or its successors in interest or others under permit from the Village arising at any time are limited to an aggregate maximum of \$10,000.00. No other breach by the City, its successors in interest or others under permit, of a provision of this Agreement is actionable in either law or equity by Owner/Operator

against the Village or them and Owner/Operator hereby releases the City, its agents, contractors, employees and its successors in interest, or others under permit from the Village for any cause of action it may have against them, other than as allowed in this paragraph, arising under this Agreement or environmental laws, regulations or common law governing the contaminated soil or groundwater in the right-of-way. Should the Village convey, vacate or transfer jurisdiction of that right-of-way, Owner/Operator may pursue an action under this Agreement against the successors in interest, other than the City, or any of this departments, or State agency, in a Court of Law.

- 10. This Agreement is entered into by the Village in recognition of laws passed by the General Assembly and regulations adopted by the Board, which encourage a tiered-approach to remediating environmental contamination. The Village in the spirit of those laws enters into this Agreement. Should any provision for this Agreement be determined to exceed the authority of the City, however, this Agreement shall be null and void.
- 11. This Agreement (including attachments, addendums, and amendments) shall run with the land and be binding upon all assigns and successors in interest to the Owner/Operator of the Site.
- 12. The Village will limit access to the Site and right-of-way as follows:
 - a. Normal Access: The Village will limit access to the Site and right-of-way via the Village Code Enforcement Department or its successor agency, by which persons seeking authorization to perform subsurface work in a Village right-of-way will be informed of the nature and extent of the contamination, and will be informed that they should take appropriate steps to ensure the health and safety of people working at the Site and right-of-way.
 - b. Emergency Access: The Village Fire Department or their successor agencies will be notified of the contamination at this Site and adjacent right-of-way and will be provided with all available environmental data regarding the Site and adjacent right-of-way. Such information will be provided to utilities in the area.
- 13. This Agreement shall continue in effect from the date of the Agreement until contaminant concentrations in the soil and groundwater are subsequently reduced through active remediation or through natural attenuation to Tier 1 residential levels as approved by the Illinois EPA and Board regulations, such that the right-of-way identified in Attachment B is demonstrated to be suitable for Tier 1 residential use and there is no longer a need for this Agreement, and the Illinois EPA has, upon written request to the Illinois EPA and notice to the City, amended the "No Further Remediation" determination for the Site to reflect unencumbered future use of that right-of-way.
- 14. Written notice and other communications relating to this agreement directed to the Village shall be sent to:

Village of Oak Park
Building and Code Enforcement Department
123 Madison Street
Oak Park, Illinois 60302

15. Written notice and other communications relating to this Agreement directed to owner/Operator shall be sent to:

James Chakkalapadavil 772 North Adele Elmhurst, Illinois 60126

With a copy to:

Environmental Protection Industries Attn. Michael Musa 16650 South Canal Street South Holland, Illinois 60473

By: ______

Date: _____

WHEREOF, Owner/Operator, James Chakkalapadavil, has caused this Agreement to be signed by its duly authorized representative:

IN WITNESS WHEREOF, the Village of Oak Park has caused this Agreement to be

D.,,	
Ву: _	Mr. James Chakkalapadavil
Date:	

Attachment A

Legal Description

Attachment B

Area Subject to Highway Authority Agreement

Attachment C

Contamination Map

Attachment D

Analytical Tables

TABLE 1. Soil Analytical Results

Client: James Chakkalapadavil

Site:

427 West Madison, Oak Park, IL

20050027 LUST Incident #:

Sampling Date: 1/7/05

Laboratory: GLA

Matrix: Soil

						Ī		1 30 3000	- 		-					
Chemical		Exposn	Exposure Route-Specific Values*	Specific Va	alues*	-	Soil Component of GW Ingestion Route*	estion estion e.e.*	SB1	SB4						
Name	Residential	mtial	Industrial/C	Industrial/Commercial	Construction Forker	n Forker	ال عواب المعراب		ις.	1/7/2005						
	Ingestion	Inhalation	Ingestion (Inhalation Ingestion Inhalation	Inhalation	Ingestion Inhalation	Inhalation	2000	200	4-6,	.8-9		-				
атех			,			*								7		
Benzene	12	0.8	100	1.6	2,300	2.2	0.03	0.17	16.9	ND						
Tolriene	16,000	650	410,000	650	410,000	42	12	59	55.2	QN					÷	
Ethylbanzana	7,800	400	200,000	400	20,000	28	13	19	34.7	ND						
V. Jones (total)	160 000	ļ	320 1 000 000	320	410,000	320	150	150	185	ON .						
Ayleries (total)	20,00	ı									: -		 i			

Illinois EPA Tier 1 Soil Remediation Objectives (ROs) for Residential and Industrial/Commercial Properties; (35 IAC 742, Appendix B, Table A and Appendix B, Table B)

All results in parts per million (mg/Kg) unless noted otherwise

nd = None Detected nro = No Remediation Objective na = Not Analyzed

a = Carcinogenic b = Noncarcinogenic

Client: James Chackalapadavil

Site: 427 West Madison, Oak Park

111ST Incident # 20050027

Sampling Date: See Below

Laboratory: GLA

Matrix: Soil

TOST HUGGELIC # TONGONTI	7000007													ŀ		
0.000		Exposi	Exposure Route-Specific Values*	specific Va	alues*		Soil Component of GW Ingestion Route*	onent of ion Route*	SB102	SB102	SB102 SB102 SB105 SB106 SB106 SB107 SB107	SB105	SB106	SB106	SB107	SB107
Nome	Resid	Residential	Industrial/Commercial	ommercial	Construction Worker	m Worker	Class I	Class II	4-6,	12-14'	4-6	12-14'	4-6.	12-14'	.8-9	12-14'
0:10	Inception	Inhalation	Indestion Inhalation Indestion Inhalation	Inhalation	Ingestion	Inhalation			9/1/05	9/1/05	9/1/05	9/1/05	9/1/05	9/1/05	9/1/05	9/1/05
	I GOSTA															
BIIEX.	12	0.8	100	1.6	2,300	2.2	0.03	0.17	0.571	0.095	18.7	4.19	19.1	*3.80€	1.47	1.45
a lierii e	16.000	650	410.000	650	410,000	42	12	29	2	Q	.37.8	10.6	16:7	1.57	0.397	1.17
l Olueire	7 800	400	200.000	400	20,000	28	13	19	Q	S	29.0	9.79	46.9	6.58	10.3	4.35
Cillyidelizerie	160 000	320	1,000,000	320	410,000	320	150	150	Q	QN	131.0	22.7	267.0	20.1	26.6	4.28
Mothyl fort brind other	780	8.800	20,000	8,800	2,000	140	0.32	0.32	0.441	8	3.24	1.06	#8:05; 0:998	0.998	S	1.20%
Intellify tell buyin enter	2				ŀ		Bahles A character & Table & and Annondiv B Table B	40 60	Jin D Table	A gad A	H vilvuoud	Table D	٠			

Illinois EPA Tier 1 Soil Remediation Objectives (ROs) for Residential and Industrial/Commercial Properties; (35 IAC 742, Appendix B, Table A and Appendix B, Table B)

All results in parts per million (mg/Kg) unless noted otherwise

a = Carcinogenic b = Noncarcinogenic

James Chackalapadavil Client:

427 West Madison Avenue, Oak Park Site

Sampling Date: See Below

Laboratory: TA

									S
	SB104	.8-9	11/11/05		12.5	1.63	3.03	0.971	2.25
Soil	SB104	4-6'	11/11/05		5.81	1.77	39.7	4.40	0.507
Matrix: Soil	SB103	10-12	11/11/05		Q	QN	Ð	Q	Ð
	SB103	4-6'	11/11/05		2	ND	QN	2	8
	SB101	8-10.	11/11/05		2	QN	QN	2	S
	SB101	4-6'	11/11/05		ş	Q	ON	2	QN
	SB108	12-14'	9/1/05		0.206	ND	0.463	1.24	Q
	SB108 SB108 SB101 SB101 SB103 SB103 SB104 SB104	6-8	9/1/05		11.2	0.460	59.0	53.6	2.02
		Class II			0.17	59	19	150	0.32
	Soil Component of GW Ingestion Route*	Class I	-		0.03	12	13	150	0.32
		1 Worker	Inhalation		2.2	42	28	320	140
'	Jes*	Construction Worker	Ingestion		2,300	410,000	20,000	410,000	2,000
	ecific Val	nmercial	Inhalation		1.6	650	400	320	8,800
	Exposure Route-Specific Values*	Industrial/Commercial	Ingestion Inhalation		100	410,000	200,000	1,000,000	20,000
	Exposul	ial	Inhalation		0.8	650	400	320	8,800
20050027		Residential	Indestion Inhalation	2	12	16,000	7,800	160,000	780
LUST Incident #: 20050027	Chemical	Name		RITEX	Benzene a	Tolliene	Ethylbenzene b	Xylenes (fotal)	Methyl tert buytl ether

Illinois EPA Tier 1 Soil Remediation Objectives (ROs) for Residential and Industrial/Commercial Properties; (35 IAC 742, Appendix B, Table A and Appendix B, Table B)

All results in parts per million (mg/Kg) unless noted otherwise

nd = None Detected nro = No Remediation Objective na = Not Analyzed

a = Carcinogenic b = Noncarcinogenic

James Chackalapadavil Client:

427 West Madison Avenue, Oak Park Site:

20050027 LUST Incident #:

Sampling Date: 3/7/06

Laboratory: TA

Matrix: Soil

									_
SB112	12-14'			P.	ρu	돧	19	ы	
SB112	4-6			рı	Pu	2	ы	pu	
SB111	12-14"			p.	uq	ри	pu	pu	
SB111	6-8'			nd	pu	nd	pu	nd	۔ ا
SB110	10-12'			nd	pu	pu	פ	nď	Table D
SB109 SB109 SB110 SB111 SB111 SB112 SB112	.8-9			pu	pu	pu	рц	nd	O vibacac
SB109	12-14			nd	nd.	pu	뒫	nd	A Land
SB109	4-6'			pu	pu	pu	рu	nd	Table
	Class II			0.17	29	19	150	0.32	London C
Soil Component of GW Ingestion Route*	Class I			0.03	12	13	150	0.32	/7 OF IAC 7/
	n Worker	Inhalation		2.2	42	58	320	140	1
nes*	Construction Worker	Ingestion		2,300	410,000	20,000	410,000	2,000	
pecific Val	mmercial	Inhalation		1.6	650	400	320	8,800	
Exposure Route-Specific Values*	Industrial/Commercial	Ingestion Inhalation Ingestion Inhalation	*	100	410,000	200,000	1,000,000	20,000	
Exposu	itial	Inhalation		0.8	650	400	320	8,800	
	Residential	Ingestion		12	16,000	7,800	160,000	780	
Chemical	Name			ene	ane b	Ethylbenzene	Xvlenes (total)	Methyl tert buytl ether	Tollo Damandia D Tollo Damandia D Tollo D
			BILE	Benzene	Toluene	Ethv	Xvler	Meth	

Illinois EPA Tier 1 Soil Remediation Objectives (ROs) for Residential and Industrial/Commercial Properties; (35 IAC

All results in parts per million (mg/Kg) unless noted otherwise

na = Not Analyzed nd = None Detected nro = No Remediation Objective

a = Carcinogenic b = Noncarcinogenic

Results in Bold/Shaded indicate concentrations exceeding most stringent Tier 1 ROs

James Chackalapadavil Client: 427 West Madison Avenue, Oak Park Site:

Sampling Date: 3/7/06 Laboratory: TA

Matrix: Soil	SB113 SB113	6-8' 12-14'			pu pu	nd nd	nd nd	nd 0.321	Methy tert buytl ether 780 8,800 20,000 8,800 2,000 140 0.32 0.32 nd nd
	Soil Component of GW Ingestion Route*	I Class II			0.17	29	19	150	0.32
	Soil Cc GW Inge	Class			0.03	12	13	150	0.32
		m Worker	Inhalation		2.2	42	58	320	140
	alues*	Construction Worker	Ingestion Inhalation		2,300	410,000	20,000	410,000	2,000
	pecific Va	mmercial	Inhalation		1.6	650	400	320	8,800
	Exposure Route-Specific Values*	Industrial/Commercial	Ingestion Inhalation Ingestion Inhalation		100	410,000	200,000	1,000,000	20,000
	Exposu	tial	Inhalation		0.8	650	400	320	8,800
20050027		Residential	Ingestion		12	16,000	7,800	160,000	780
LUST Incident #:	Chemical	Name		BITEX	Benzene	Toluene	Fthylhenzene	Xvienes (total) b	Methyl tert buytl ether

Results in Bold/Shaded indicate concentrations exceeding most stringent Tier 1 ROs

a = Carcinogenic b = Noncarcinogenic

All results in parts per million (mg/Kg) unless noted otherwise

Client: James Chackalapadavil

Site: 427 West Madison Avenue, Oak Park

LUST Incident #: 20050027

Laboratory: TA

Matrix: Soil

Sampling Date: 7/6/06

											-	<u> </u> -		-	-	
Chemical		Expost	Exposure Route-Specific Valu	pecific Va	lines*	<u> </u>	Soil Component of GW Ingestion Route	Soil Component of GW Ingestion Route*		SB114	SB114 SB114 SB115 SB116 SB116 SB117 SB117	SB115	SB116	SB116	SB117	SB117
Name	Resi	Residential	Industrial/Commercial	nmercial	Construction Worker	m Worker	Class I	Class II	2-4,	8-10'	4-6,	10-12	4-6'	10-12'	4-6'	10-12
	Ingestion	Inhalation	Ingestion Inhalation Ingestion Inhalation	Inhalation	Ingestion	Inhafation					·					
Benzene a	12	9.0	100	1.6	2,300	2.2	0.03	0.17	pu	D .	100	g	덛	밀	2	1
Tolliene	16,000	650	410,000	650	410,000	42	12	29	pu	РĽ	рu	рL	рL	pu	ЪГ	5
Ethylhenzene	7,800	400	200,000	400	20,000	58	13	19	pu	pu	þ	pu	pu	pu	nd	рu
Xvlenes (fotal)	160,000	320	1,000,000	320	410,000	320	150	150	Ы	nd	P	пd	рu	nd	pu	рu
Methyl tert buytl ether	780	8,800	20,000	8,800	2,000	140	0.32	0.32	pu	pu	pu	pu	pu	bu	pu	pu
	-															

Illinois EPA Tier 1 Soil Remediation Objectives (ROs) for Residential and Industrial/Commercial Properties; (35 IAC 742, Appendix B, Table A and Appendix B, Table B)

All results in parts per million (mg/Kg) unless noted otherwise

nd = None Detected nro ≈ No Remediation Objective na = Not Analyzed

a = Carcinogenic b = Noncarcinogenic

TABLE 2. Groundwater Analytical Results

James Chakkalapadavil Client:

427 West Madison, Oak Park, IL

Site:

Sampling Date: 11/11/05 Laboratory: TA

Matrix: Water

20050027 LUST Incident #:

							••			_	_	_					_	_
Chemical		GW RO (mg/L)*	mg/L)*	MW1	MW2	MW3 MW4	MW4											
Name	O	Class I Class II	Class II					-		+						İ		
									_									The state of the s
BITEX																-		
Benzene	9 E	0.005	0.025	Ω	QN	0.904	9				i				_			
Tolliene	٩	1.0	2.5	2	Q	0.00643	2		<u></u> [į				_
Ethylhenzene	٥	0.7	1.0	S	Q	0,691	S	<u></u>				i						
(total)	٩	10.0	10.0	S	Q.	0.201	ND											
Methyl tert huytlether		0.07	0.07	Q	S	0.00725	0.006			-						-		
ייוכנון או נכו בים לה כהייב									Total Conference CAT Can be and Can Can and Can	D	41 041 2	4444	ich a vin	L				

"Illinois EPA Tier 1 Groundwater Remediation Objectives (ROs) for the Groundwater Component of the Groundwater Ingestion Route; 35 IAC 742, Appendix B, Table E

All results in parts per million (mg/L) unless noted otherwise

a = Carcinogenic b = Noncarcinogenic

SAMPLE ELUC

PREPARED BY:

Name:

Environmental Protection Industries

Address:

16650 South Canal Street

South Holland, IL 60473

RETURN TO:

THE ABOVE SPACE FOR RECORDER'S OFFICE

Model Environmental Land Use Control

THIS ENVIRONMENTAL LAND USE CONTROL ("ELUC"), is made thisday of, 2007, by, Property Owner of the real property located at the common address (Property)
WHEREAS, 415 ILCS 5/58.17 and 35 Ill. Admin. Code 742 provide for the use of an
ELUC as an institutional control in order to impose land use limitations or requirements related to
environmental contamination so that persons conducting remediation can obtain a No Furthe
Remediation determination from the Illinois Environmental Protection Agency ("TEPA"). The

environmental contamination so that persons conducting remediation can obtain a No Further Remediation determination from the Illinois Environmental Protection Agency ("IEPA"). The reason for an ELUC is to ensure protection of human health and the environment. The limitations and requirements contained herein are necessary in order to protect against exposure to contaminated soil and groundwater, or both, that may be present on the property as a result of retail petroleum facility activities. Under 35 Ill. Admin. Code 742, the use of risk-based, site specific remediation objectives may require the use of an ELUC on real property, and the ELUC may apply to certain physical features (e.g., engineering barriers, monitoring wells, caps, etc.).

WHEREAS, <u>James Chakkalabadavil</u> [the party performing remediation] intends to request risk-based, site specific soil and groundwater remediation objectives from IEPA under 35 Ill. Admin. Code 742 to obtain risk-based closure of the site, identified by Bureau of Land [10-digit LPC or Identification number] <u>1880-255050</u>, utilizing an ELUC.

NOW, THEREFORE, the recitals set forth above are incorporated by reference as if fully set forth herein, and the Property Owner agrees as follows:

Section One. Property Owner does hereby establish an ELUC on the real estate, situated in the County of _____Cook_, State of Illinois and further described in Exhibit A attached hereto and incorporated herein by reference (the "Property").

Attached as Exhibit B are site maps that show the legal boundary of the Property, any physical features to which the ELUC applies, the horizontal and vertical extent of the contaminants of concern above the applicable remediation objectives for soil and groundwater or both, and the nature, location of the source, and direction of movement of the contaminants of concern, as required under 35 Ill. Admin. Code 742.

Section Two. Property Owner represents and warrants he/she is the current owner of the Property and has the authority to record this ELUC on the chain of title for the Property with the Office of the Recorder or Registrar of Titles in <u>Cook</u> County, Illinois.

<u>Section Three.</u> The Property Owner hereby agrees, for himself/herself, and his/her heirs, grantees, successors, assigns, transferees and any other owner, occupant, lessee, possessor or user of the Property or the holder of any portion thereof or interest therein, that:

- 1) GROUNDWATER UNDER THE PROPERTY SHALL NOT BE USED AS A POTABLE WATER SUPPY OF WATER.
- 2) ANY CONTAMINATED GROUNDWATER OR SOIL THAT IS REMOVED, EXCAVATED, OR DISTURBED FROM THE PROPERTY DESCRIBED IN EXHIBIT A HEREIN MUST BE HANDLED IN ACCORDANCE WITH ALL APPLICABLE LAWS AND REGULATIONS.
- THE AUTO REPAIR SHOP OR THEIR SUCCESSOR(S) WILL RESTRICT 3) **PERSONS SEEKING** WHICH SITE. BYACCESS TO THE AUTHORIZATION TO ENTER THE SITE AND PERFORM SUBSURFACE WORK IN THE AREA OF THE CONTAMINATION WILL BE INFORMED OF THE NATURE AND EXTENT OF THE CONTAMINATION, AND WILL BE INFORMED THAT THEY SHOULD TAKE APPROPRIATE STEPS TO ENSURE THE HEALTH AND SAFETY, AS APPLICABLE, OF PEOPLE WORKING AT THE SITE.

Section Four. This ELUC is binding on the Property Owner, his/her heirs, grantees, successors, assigns, transferees and any other owner, occupant, lessee, possessor or user of the Property or the holder of any portion thereof or interest therein. This ELUC shall apply in perpetuity against the Property and shall not be released until the IEPA determines there is no longer a need for this ELUC as an institutional control; until the IEPA, upon written request, issues a new no further remediation determination approving modification or removal of the limitation(s) or requirements(s); and until and a release or modification of the land use limitation or requirement is filed on the chain of title for the Property.

Section Five. Information regarding the remediation performed on the Property may be obtained from the IEPA through a request under the Freedom of Information Act (5 ILCS 140) and rules promulgated there under by providing the IEPA with the [10-digit LPC or identification number] listed above.

Section Six. The effective date of this ELUC shall be the date that it is officially recorded in the chain of title for the Property to which the ELUC applies.

WITNESS the following signatures:

Proper	ty Owner(s)
By:	Danas Chelate and West Senten
	((Sign Nound) ((Sign Nound) (Chappenty Adaptes) (Chappenty Adaptes) (Chappenty Adaptes)
Its:	
Date:	

STATE OF ILLINOIS COUNTY OF)) SS:)		
I,	Property Address cribed to the foregoing i edged that in said capa luntary act for the uses a	, and personally known to a nstrument, appeared before n cities they signed and delivered purposes therein set forth.	me to be the ne this day in ered the said
Given under my hand a	and official seal, this	day of	, 2006.
		Notary Public	
STATE)) SS:)		
I,, a no appeared lames Chakkaiapada Property Owner(s), of	going instrument as the	Property Owner(s) herein set	lay in person ne to be the lged that they forth, and as
Given under my hand and offi	icial seal, thisday o	of, 2	006.
		Notary Public	

(Parcel Index Number)

Exhibit A

The subject property is located in the City of commonly known as [Property Address] , described as:					te of Illinois, particularly			
Address: [ADDRESS] Oak Prot. Illinois 60	<u> </u>							
P.I.N.: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX								
(PURSUANT TO 742.1010(D)(2))								
LEGAL DESCRIPTION								

[INSERT LEGAL DESCRIPTION]

Exhibit B

IN ACCORDANCE WITH SECTION 742.1010(D)(8)(A)-(D):

- (A) Scaled Map showing legal boundary of the property to which the ELUC applies.
 - Figure 1 Legal Boundary of ELUC
- (B) Scaled Maps showing the horizontal and vertical extent of contaminants of concern above the applicable remediation objectives for soil and groundwater to which the ELUC applies.
 - Figure 2 Estimated Extent of Soil Contamination Figure 3 - Estimated Extent of Groundwater Contamination
- (C) Scaled Maps showing the physical features to which the ELUC applies.
 - Figure 1 Site Map
- (D) Scaled Maps showing the nature, location of the source, and direction of movement of the contaminants of concern.
 - Figure 4 Potentiometric Surface Map

OAK PARK GROUNDWATER ORDINANCE

CLERK'S CERTIFICATE

I, Sandra Sokol, Village Clerk of the Village of Oak Park, in the County of Cook and the State of Illinois, do hereby certify that ORDINANCE #2001-0-107 entitled: An Ordinance Prohibiting The Use Of Groundwater As A Potable Water Supply By The Installation Or Use Of Potable Water Supply Wells Or By Any Other Method was adopted by the Village Board of Trustees on December 3, 2001 and approved by the Village President on December 3, 2001. The ORDINANCE is available for public inspection in the Office of the Village Clerk.

IN WITNESS WHEREOF I have set my hand and affixed the seal of said Village of Oak Park this 11th day of December, 2001.

Sandra Sokol Village Clerk

We then on

Kathleen M. Cannon Deputy Village Clerk

(seal)

AN ORDINANCE PROHIBITING THE USE OF GROUNDWATER AS A POTABLE WATER SUPPLY BY THE INSTALLATION OR USE OF POTABLE WATER SUPPLY WELLS OR BY ANY OTHER METHOD

WHEREAS, various properties throughout the Village of Oak Park, Illinois have been used over a period of time for commercial/industrial purposes or are near properties which have been so used; and

WHEREAS, because of said use, concentrations of certain chemical constituents in the groundwater beneath the Village of Oak Park may exceed Class I groundwater quality standards for potable resource groundwater as set forth in 35 Illinois

Administrative Code 620 or Tier 1 residential remediation objectives as set forth in 35

Illinois Administrative Code 742; and

WHERAS, the Village of Oak Park (hereinafter "the Village") desires to limit potential threats to human health from groundwater contamination while facilitating the redevelopment and productive use of properties that are the source of said chemical constituents;

NOW, THEREFORE, BE IT ORDAINED by the President and Board of Trustees of the Village of Oak Park, County of Cook, State of Illinois as follows:

SECTION ONE: ADOPTION OF FINDINGS.

The findings set forth hereinabove are incorporated herein and are made apart hereof.

SECTION TWO: USE OF GROUNDWATER AS A POTABLE WATER SUPPLY PROHIBITED.

The use or attempt to use as a potable water supply, groundwater from within the corporate limits of the Village of Oak Park, by the installation or drilling of wells or by

any other method is hereby prohibited, including at points of withdrawal by the Village of Oak Park.

SECTION THREE: VILLAGE PROHIBITION.

Except for the provisions contained in Section Four, all restrictions contained in this Ordinance shall be binding upon the Village of Oak Park, Illinois.

SECTION FOUR: PENALTIES.

Any person violating the provisions of this ordinance shall be subject to a fine of up to \$500.00 for each violation.

SECTION FIVE: DEFINITIONS.

"Person" is any individual, partnership, co-partnership, firm, company, limited liability company, corporation, association, joint stock company, trust, estate, political subdivision, or any other legal entity, or their legal representatives, agents, or assigns.

"Potable water" is any water used for human or domestic consumption, including, but not limited to, water used for drinking, bathing, swimming, washing dishes, or preparing foods.

SECTION SIX: REPEALER

All ordinances or parts of ordinances in conflict with this ordinance are hereby repealed insofar as they are in conflict with this ordinance.

SECTION SEVEN: SEVERABILITY.

If any provision of this ordinance or its application to any person or under any circumstances is adjudged invalid, such adjudication shall not affect the validity of the ordinance as a whole or of any portion not adjudged invalid.

SECTION EIGHT: EFFECTIVE DATE.

THIS ORDINANCE shall be in full force and effect from and after its passage, approval and publication as required by law.

ADOPTED this <u>3rd</u> day of <u>December</u>, 2001, pursuant to a roll call vo. e as follows:

AYES:

Trustees Carpenter, Ebner, Gockel, Hodge-West, Kostopulos

and Turner and President Trapani

NAYS:

None

ABSENT:

None

APPROVED by me this 3rd day of December, 2001

Village President

ATTEST:

Vanilsa Safeal
Village Clerk

BY: Deputy Village Clerk

DRAFT PROPERTY OWNER NOTIFICATION LETTER

CERTIFIED MAIL

Month Day, 200X

{Property Owner Name} {Address}

Re: Property Owner Notification Clark Gas Station 427 West Madison Street Oak Park, Illinois LUST Incident #20050027

Dear Property Owner:

On behalf of BJC Enterprises, Environmental Protection Industries (EPI) is submitting to you a Property Notification Form, as required by the Illinois Environmental Protection Agency (IEPA), to notify you of the potential for off-site migration of groundwater contamination from the property located at 427 West Madison Street, in the Village of Oak Park, Illinois.

The Village of Oak Park has an approved Groundwater Use Restriction Ordinance that prohibits the use of groundwater for potable water within the Village of Oak Park. Under Illinois regulations, local ordinances that effectively prohibit the installation and use of new potable water supply wells may be used to establish groundwater remediation objectives (35 Ill. Administrative Code 742.1015). The IEPA has determined that the ordinance adopted by the Village of Oak Park meets the regulatory requirements. As such, groundwater contamination that does not pose a threat to human health or the environment can be managed in-place with the use of the Groundwater Ordinance.

Sincerely, Environmental Protection Industries

Cindy Panagiotopoulos Project Manager

NOTICE

Month Day, 200X

Dear Property Owner:

James Chakkalapadavil/BJC Enterprises is performing an environmental response action at 427 West Madison Street, Oak Park, Illinois. The response action is being performed because of a release of gasoline oil product from underground storage tanks at the property. The response action consists of providing property owners within the estimated limits of the groundwater contamination with this Notification.

To protect human health, Illinois regulations require that Shaukat Sindhu either clean up groundwater contamination or demonstrate that the groundwater in the area of the release will not be used as potable water. ("Groundwater" is the water beneath the ground stored in the pores of soil and rock; some communities and homeowners pump this water out of wells to supply potable water. "A Potable" means fit for human consumption including drinking, bathing, preparing food, washing dishes, and so forth.)

The Village of Oak Park has approved a local ordinance prohibiting the use of groundwater for potable water. Under Illinois regulations, local ordinances that effectively prohibit the installation and use of new potable water supply wells may be used to establish groundwater remediation objectives (35 Illinois Administrative Code 742.1015). The Illinois Environmental Protection Agency ("Illinois EPA") has determined that the ordinance adopted by the Village of Oak Park meets the regulatory requirements. This ordinance has been used by the Illinois EPA in reviewing James Chakkalapadavil/BJC Enterprises request for groundwater remediation objectives as part of this response action.

Your property, XXX XXXX XXXX (PIN #1XX-XX-XXX), is included in the area affected by the ordinance. This means that you cannot install or use private, potable water wells on your property. Based on the remediation objectives established in reliance on this ordinance, groundwater beneath your property may not be suitable for human consumption. Illinois regulations require that you be notified of these facts.

The ordinance may be found at the Village of Oak Park, 123 Madison Street, Oak Park, Illinois. If you wish to obtain a copy of the ordinance, please contact their City Clerk's Office at (708) 383-6400. To learn more about 427 West Madison Street, Oak Park, please contact the Illinois EPA, Bureau of Land Project Manager, Mohammed Rahman at (217) 782-6762. You may also obtain a copy of the complete Illinois EPA file for 427 West Madison Street in Oak Park, Illinois. To do so, you will need to submit a written request with your signature to the Freedom of Information Act (FOIA) Officer, Illinois EPA, Bureau of Land, 1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois, 62794-9276. When requesting a copy of the file, please reference the file heading shown below:

LPC # 0312255050 - Cook County
Oak Park/Chakkalapadavil, James
427 West Madison Street, Oak Park, Illinois
LUST Incident #20050027
LUST Technical File

Sincerely,

Cindy Panagiotopoulos Project Manager Environmental Protection Industries

WATER WELL INFORMATION

Minois State Water Survey PICS Database

Tuesday, January 11, 2005

County: COOK

Township: 39N

Range: 13E

Sections: 07,08,17,18

Records Found: 0

Contact the Illinois State Water Survey's Ground Water Division @ (217)-333-9043 Questions: Please cite the Illinois State Water Survey's PICS (Public-industrial-Commercial) Database in all publications based wholly or partially Publication:

on this information.

information was initially entered from public water supply data and supplemented with the Illinois State Water Inventory Project data. This database is Note: The data in the PICS Database is a listing of municipal and commercial wells which are known to the Illinois State Water Survey (ISWS). This updated as additional information is received and verified.

This data cannot be resold or redistributed. The Illinois State Water Survey must be acknowledged in any use of this material.

=	91)	4	e)		_	بد.		
								[-
	Γ.							۱۲
				*				٦
			_					-
			_		_			۱,
								4
								5
					_			0
				٠				

Location of a 10-acre-plot within a section:

The origin can be found at the lower right-hand-corner of an 8 x 8 grid. In this example, the well is in the 10-acre plot 3d'.

Inmois State Water Survey Private Well Database

Tuesday, January 11, 2005

County: COOK

Township: 39N

Range: 13E

Sections: 07,08,17,18

occuous. 07,00,17,

Records Found: 20

Contact the Illinois State Water Survey's Ground Water Division @ (217)-333-9043 Questions: Please cite the Illinois State Water Survey's Private Well Database in all publications based wholly or partially on this information. Publication:

entered verbatim from well logs submitted by the driller, chemical analysis reports, well sealing forms, well inventory forms from the 1930-1934 well survey, and other special projects. The accuracy of this data is controlled by those submitting the forms. Information in the Private Well Database has not been verified. Note: The data in the Private Well Database is a listing of non-municipal wells which are known to the Illinois State Water Survey (ISWS). This information has been

This data cannot be resold or redistributed. The Illinois State Water Survey must be acknowledged in any use of this material.

드,			_		Ξ	
- 1						
		·	¥			
			_			
			_		_	
			_	_		
			_			

Location of a 10-acre-plot within a section:

The origin can be found at the lower right-hand-corner of an 8 x 8 grid. In this example, the well is in the 10-acre plot '3d'.

WELL AQ SIAT FOMP TYPE TYPE LVL LVL	BR 132 132	BR 141 76	- BR 153	DD 128) DK	BR 138	BR BR	BR BR BR 130	BR 130 BR 130	BR 130 BR 130 BR 130	BR 130 BR 126 BR 128	BR 130 BR 126 BR 128 - BR 128	BR 130 8 BR 126 BR 126 BR 128 BR 134 BR 134	BR 130 8 BR 126 BR 128 BR 134 BR 134 BR	BR 130 8 BR 128 BR 134 BR 134 BR 134 BR
TYPE USE TYPE	00 CS -	SO DO	- SO 90	- SO DO		OG CS	S S	જ જ જ	S S S S	S S S S	S S S S	ର	S S S S S S 5	SS	S2 S2 S2 S2 S2 S3 D5 D5<
DATE DEPTH TY	00/00/1885 2100 O	00/00/1885 1616 O	00/00/1885 1568 O	00/00/1885 2140 O	00/00/1885 2160 O		1600	1600	2175	1600 2175 2140 1600	1600 2175 2140 1600 1550	1600 c 2175 2140 1600 1550 1525	1600 2175 2140 1600 1550 1525 1623	1600 2175 2140 1600 1525 1525 1525 1525	1600 2175 2140 1600 1550 1525 1525 1525 1623
OWNER DRIELER	OAK PARK #9	OAK PARK #10	OAK PARK #1	OAK PARK #2	OAK PARK #3		OAK PARK #4	OAK PARK #4 OAK PARK #7	OAK PARK #4 OAK PARK #7	OAK PARK #4 OAK PARK #8 OAK PARK #8	OAK PARK #4 OAK PARK #8 OAK PARK #11 OAK PARK #11	OAK PARK #4 OAK PARK #8 OAK PARK #11 OAK PARK #5 OAK PARK #6	OAK PARK #4 OAK PARK #8 OAK PARK #11 OAK PARK #5 THE FAIR STORE THE FAIR STORE	1 DRE E CREAM CO	I B CREAM CO
FIPS TWN RNG SEC PLOT	218767 031 39N 13E 07 rock at 60' well finished in sandstone	218768 031 39N 13E 07	218759 031 39N 13E 07 well was finished in cambrian sandstone	218760 031 39N 13E 07 well was finished in cambrian sandstone	218761 031 39N 13E 07 well was finished in cambrian sandstone		762 031 39N 13E 07 was finished in cambrian sandstone	was finished in cambrian sandstone in cambrian sandstone in cambrian sandstone finsihed in cambrian sandstone	vas finished in cambrian sandstone 1765 031 39N 13E 07 1765 031 39N 13E 07 1766 031 39N 13E 07 1766 031 39N 13E 07 1766 131 39N 13E 07	3762 031 39N 13E 07 1 was finished in cambrian sandstone 07 03 13E 07 1 finished in cambrian sandstone 07 07 07 1 finished in cambrian sandstone 03 03N 13E 07 1 finished in cambrian sandstone 03 03 03 07 1 for rock well 185' to sandstone 07 07 07 07	3762 031 39N 13E 07 1 was finished in cambrian sandstone 07 07 1 finished in cambrian sandstone 07 1 finished in cambrian sandstone 07 10 rock well 185' to sandstone 07 1 was finished in cambrian sandstone 07	3762 031 39N 13E 07 1 was finished in cambrian sandstone 39N 13E 07 1 finished in cambrian sandstone 07 16 rock well 185' to sandstone 07 8769 031 39N 13E 07 10 rock well 185' to sandstone 07 1 was finished in cambrian sandstone 07 8764 031 39N 13E 07 860 well finished in sandstone 07 08	39N 13E 07 39N 13E 07 39N 13E 07 n cambrian sandstone 39N 13E 07 l1 185' to sandstone 39N 13E 07 led in cambrian sandstone 39N 13E 07 led in cambrian sandstone 39N 13E 07 led in cambrian sandstone 39N 13E 07 led in sandstone 39N 13E 07	vell was finished in cambrian sandstone 218765 031 39N 13E 07 218765 031 39N 13E 07 218766 031 39N 13E 07 vell finished in cambrian sandstone 218769 031 39N 13E 07 50' to rock well 185' to sandstone 218764 031 39N 13E 07 218764 031 39N 13E 07 33758 031 39N 13E 07 4E ock at 60' well finished in sandstone 33778 031 39N 13E 07 8F	218762 031 39N 13E 07 vell was finished in cambrian sandstone 218765 031 39N 13E 07 vell finished in cambrian sandstone 218766 031 39N 13E 07 vell finished in cambrian sandstone 07 07 218769 031 39N 13E 07 301 031 39N 13E 07 4E 318764 031 39N 13E 07 4E 33758 031 39N 13E 07 8F 33786 031 39N 13E 07 8F 33786 031 39N 13E 07 8F

WID F	FIPS	TWN RNG		SEC	SEC PLOT	OWNER	DRILLER	рате рерти	TYPE U	USE TYPE TYPE LVL		LVL	CPM
33790	031	39N	13E	17		PUBLIC SERVICE CO OF NO ILL #2		00/00/1903 142	0	IC			
353575 031 39N 13E 17 6C BARRIE PARK-FORMER MGP SITE: FORMER WELL#1: DEPTH ~61' FROM CURRENT TOC (TOC=24"	031 PARK- R WELI UT TOC	39N -FORM L#1: DE	13E IER MC EPTH = =24'	17 GP SIT =61' FR	6C TE: ROM	COMMONWEALTH EDISON CO.	RD-N-P DRILLING	85 Sealed: 4/22/03	A	JQ.			}
33792	031	39N	13E	17	29	PUBLIC SERVICE CO OF NO ILL	GEIGER	09/00/1913 1912	90	IC BR			
351167	031	39N	13E	18	8H	VILLAGE OF OAK PARK	MACK R. CLARK	11 Sealed: 6/18/02	₹	DF			}
351168	031	39N	136	18	8H	VILLAGE OF OAK PARK	MACK R. CLARK	10 Sealed: 6/18/02	₹	Jū	 		
							-						
								,					
									í				

Map Area: 39N-13E-18 m3 to 39N-13E-8 m3

7

•	Oil	茶	Gas Injection	Ø	Junked	
*	Oil & Gas	(3	Gas Storage	Ģ.	Temporarily Abandoned	
☼	Gas	⊕	Salt Water Disposal	8	Observation	
D&A - Oil Show Water Injection Other Injection						
→ D&A - Gas Show						
□ D&A - Oil & Gas Show O Permit						
ò	D&A	ð	Water	+	Status Unknown	

0	1102	2204 ft
Illino	is State Geolog	ical Survey
QuES	StoR: Custo	om Map
Date: 12-	JAN-05 Scale:	1:13224

Displayed data is based upon information supplied to the illinois State Geological Survey (ISGS) and are not field verified. The ISGS does not guarantee the validity, accuracy or completeness of these data. 12-JAN-05

QuEStoR Data Extraction

DB: oradb

Non Oil and Gas - Wells

SW SE NE

120310162600

Chicago Sub. Water

7-39N-13E

Cook

Status: WATER

Oak Park Village

6

Elev: 623GL

permit: 0

permit date:

Lambert Y: 3227477

comp. date: 01/01/08 td: 1616

Lambert X: 3464029 producing formation: latitude: 41.888026

td formation:

longitude: 87.788372

-1-

Information and data presented were obtained from various Federal, State, and local agencies and are subject to revision.

ENVIRONMENTAL

DESIGNED CAD CHECKED

C.P.

R.M.

DATE 02/24/05

S17/R26 MODELING RESULTS

Site: Clark
Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Benzene

Soil Type: Silt Clay

Groundwater Remediation Objectives (Class I)	0.8406	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, Cw	16.812	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, Ks	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, ps	2.650	g/cm ³	(Default)
Dry Soil Bulk Density, p _b	1.700	g/cm³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.118	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, f _{oc}	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, $K_{\alpha c}$	58.900	L /Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remediation Objectives	5.810	mg/kg	(Soil Sample SB104 (4-6'))

Site: Clark

Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Benzene

Soil Type: Silt Clay

Tier 1 Soil Remediation Objectives	0.206	mg/kg	(Soil Sample SB108 (12-14'))
Infiltration Rate, I	0.300	m/year	(Default)
Dilution Factor, DF	20	unitless	(Default)
Organic Carbon Partition Coefficient, Koc	58.900	L/Kg	(Table E, Appendix C)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Soil-Water Partition Coefficient, K _d	0.118	L/Kg	(Calculated, Equation S19)
Dry Soil Bulk Density, p _b	1.700	g/cm³	(Table B, Appendix C)
Soil Particle Density, ps	2.650	g/cm ³	(Default)
Total Soil Porosity, n	0.430	unitless	(Default)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Target Soil Leachate Concentration, Cw	0.596	mg/L	(Calculated, Equation S17)
Groundwater Remediation Objectives (Class I)	0.0298	mg/L	(Calculated, Equation S18)

Site: Clark

Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Benzene

Soil Type: Silt Clay

Groundwater Remediation Objectives (Class I)	1.6204	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, C _w	32.409	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)
Water-filled Soil Porosity	0.375	L/L _.	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, p _s	2.650	g/cm ³	(Default)
Dry Soil Bulk Density, p _b	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.118	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, K_{oc}	58.900	ÚКg	(Table E, Appendix C)
Dilution Factor, DF	20	unitiess	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remediation Objectives	11.200	mg/kg	(Soil Sample SB108 (6-8'))

Site:	Clark	
Site Location:	427 West Madison, Oak Park, IL	
LUST Incident:	20050027	
Contaminant:	Benzene	· .
Soil Type:	Silt Clay	

2.650 0.430 8 0.042 0.375 0.055 0.228	g/cm ³ unitless m/year unitless L/L L/L unitless mg/L	(Default) (Default) (Table K, Appendix C) (Table K, Appendix C) (Calculated, Equation S20) (Calculated, Equation S21) (Table E, Appendix C) (Calculated, Equation S17)
0.430 8 0.042 0.375 0.055 0.228	unitless m/year unitless L/L L/L unitless	(Default) (Table K, Appendix C) (Table K, Appendix C) (Calculated, Equation S20) (Calculated, Equation S21) (Table E, Appendix C)
0.430 8 0.042 0.375 0.055	unitless m/year unitless L/L L/L	(Default) (Table K, Appendix C) (Table K, Appendix C) (Calculated, Equation S20) (Calculated, Eqaution S21)
0.430 8 0.042 0.375	unitless m/year unitless L/L	(Default) (Table K, Appendix C) (Table K, Appendix C) (Calculated, Equation S20)
0.430 8 0.042	unitless m/year unitless	(Default) (Table K, Appendix C) (Table K, Appendix C)
0.430 8	unitless m/year	(Default) (Table K. Appendix C)
0.430	unitless	(Default)
	•	•
2.650	g/cm ³	(Default)
1.700	g/cm ³	(Table B, Appendix C)
0.118	L/Kg	(Calculated, Equation S19)
0.002	g/g	(Default)
8.900	L/Kg	(Table E, Appendix C)
20	unitless	(Default)
0.300	m/year	(Default)
2.500	mg/kg	(Soil Sample SB104 (6-8'))
	0.300 20 8.900	0.300 m/year 20 unitless 8.900 L/Kg

Site: Clark
Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Benzene

Soil Type: Silt Clay

Groundwater Remediation Objectives (Class I)	0.0826	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, Cw	1.652	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)
Water-filled Soil Porosity	0.375	L/ L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, p _s	2.650	g/cm³	(Default)
Dry Soil Bulk Density, p _b	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.118	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, Koc	58.900	L/Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remediation Objectives	0.571	mg/kg	(Soil Sample SB102 (4-6'))

Site:	Clark
Site Location:	427 West Madison, Oak Park, IL
LUST Incident:	20050027
Contaminant:	Benzene
Soil Type:	Silt Clay

Tier 1 Soil Remediation Objectives	0.095	mg/kg	(Soil Sample SB102 (12-14'))
Infiltration Rate, I	0.300	m/year	(Default)
Dilution Factor, DF	20	unitiess	(Default)
Organic Carbon Partition Coefficient, K _{oc}	58.900	L/Kg	(Table E, Appendix C)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Soil-Water Partition Coefficient, K _d	0.118	Ľ∕Kg	(Calculated, Equation S19)
Dry Soil Bulk Density, p _b	1.700	g/cm ³	(Table B, Appendix C)
Soil Particle Density, ps	2.650	g/cm ³	(Default)
Total Soil Porosity, n	0.430	unitless	(Default)
Saturated Hydraulic Conductivity, K _s	8 .	m/year	(Table K, Appendix C)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Target Soil Leachate Concentration, Cw	0.275	mg/L	(Calculated, Equation S17)
Groundwater Remediation Objectives (Class I)	0.0137	mg/L	(Calculated, Equation S18)

Site:	Clark
Site Location:	427 West Madison, Oak Park, IL
LUST Incident:	20050027
Contaminant:	Benzene
Soil Type:	Silt Clay

Tier 1 Soil Remediation Objectives	18.700	mg/kg	(Soil Sample SB105 (4-6'))
Infiltration Rate, I	0.300	m/year	(Default)
Dilution Factor, DF	20	unitless	(Default)
Organic Carbon Partition Coefficient, K _{oc}	58.900	L/Kg	(Table E, Appendix C)
Organic Carbon Content of Soil, f _∞	0.002	g/g	(Default)
Soil-Water Partition Coefficient, K _d	0.118	L/Kg	(Calculated, Equation S19)
Dry Soil Bulk Density, pb	1.700	g/cm ³	(Table B, Appendix C)
Soil Particle Density, ps	2.650	g/cm³	(Default)
Total Soil Porosity, n	0.430	unitless	(Default)
Saturated Hydraulic Conductivity, Ks	8	m/year	(Table K, Appendix C)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Target Soil Leachate Concentration, Cw	54.111	mg/L	(Calculated, Equation S17)
Groundwater Remediation Objectives (Class I)	2.7055	mg/L	(Calculated, Equation S18)

 Site:
 Clark

 Site Location:
 427 West Madison, Oak Park, IL

 LUST Incident:
 20050027

 Contaminant:
 Benzene

 Soil Type:
 Silt Clay

Groundwater Remediation Objectives (Class I)	0.6062	mg/L	(Calculated, Equation S18)
-		<u>-</u>	
Target Soil Leachate Concentration, Cw	12,124	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, p₅	2.650	g/cm ³	(Default)
Dry Soil Bulk Density, p₀	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, Kd	0.118	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, K _{oc}	58.900	L/Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remediation Objectives	4.190	mg/kg	(Soil Sample SB105 (12-14'))

 Site:
 Clark

 Site Location:
 427 West Madison, Oak Park, IL

 LUST Incident:
 20050027

 Contaminant:
 Benzene

 Soil Type:
 Silt Clay

Tier 1 Soil Remediation Objectives	19.100	mg/kg	(Soil Sample SB106 (4-6'))
Infiltration Rate, I	0.300	m/year	(Default)
Dilution Factor, DF	20	unitless	(Default)
Organic Carbon Partition Coefficient, K₀c	58.900	L/Kg	(Table E, Appendix C)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Soil-Water Partition Coefficient, K _d	0.118	L/Kg	(Calculated, Equation S19)
Dry Soil Bulk Density, p _b	1.700	g/cm ³	(Table B, Appendix C)
Soil Particle Density, p _s	2.650	g/cm ³	(Default)
Total Soil Porosity, n	0.430	unitless	(Default)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Water-filled Soil Porosity	0,375	L/L	(Calculated, Equation S20)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Target Soil Leachate Concentration, Cw	55.268	mg/L	(Calculated, Equation S17)
Groundwater Remediation Objectives (Class I)	2.7634	mg/L	(Calculated, Equation S18)

Site: .	Clark
Site Location:	427 West Madison, Oak Park, IL
LUST Incident:	20050027
Contaminant:	Benzene
Soil Type:	Silt Clay

Tier 1 Soil Remediation Objectives	3.800	mg/kg	(Soil Sample SB106 (12-14'))
Infiltration Rate, I	0.300	m/year	(Default)
Dilution Factor, DF	20	unitless	(Default)
Organic Carbon Partition Coefficient, Koc	58.900	L/Kg	(Table E, Appendix C)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Soil-Water Partition Coefficient, K _d	0.118	L/Kg	(Calculated, Equation S19)
Dry Soil Bulk Density, p _b	1.700	g/cm³	(Table B, Appendix C)
Soil Particle Density, ps	2.650	g/cm ³	(Default)
Total Soil Porosity, n	0.430	unitless	(Default)
Saturated Hydraulic Conductivity, Ks	8	m/year	(Table K, Appendix C)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Target Soil Leachate Concentration, Cw	10.996	mg/L	(Calculated, Equation S17)
Groundwater Remediation Objectives (Class I)	0.5498	mg/L	(Calculated, Equation S18)

Site:	Clark
Site Location:	427 West Madison, Oak Park, IL
LUST Incident:	20050027
Contaminant:	Benzene
Soil Type:	Silt Clay

Groundwater Remediation Objectives (Class I)	0.2127	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, Cw	4.254	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, p _s	2.650	g/cm ³	(Default)
Dry Soil Bulk Density, p _b	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.118	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, foc	0.002	g/ g	(Default)
Organic Carbon Partition Coefficient, K _{oc}	58.900	L/Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remediation Objectives	1.470	mg/kg	(Soil Sample SB107 (6-8'))
•			•

Site: Clark

Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Benzene

Soil Type: Silt Clay

Groundwater Remediation Objectives (Class I)	0.2098	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, C _w	4.196	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, ps	2.650	g/cm ³	(Default)
Dry Soil Bulk Density, Pb	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.118	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, foo	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, K _{oc}	58.900	L∕Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remediation Objectives	1.450	mg/kg	(Soil Sample SB107 (12-14'))

Site:	Clark
Site Location:	427 West Madison, Oak Park, IL
LUST Incident:	20050027
Contaminant:	Benzene
Soil Type:	Silt Clay

Groundwater Remediation Objectives (Class I)	2.4451	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, C _w	48.902	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0,228	unitless	(Table E, Appendix C)
Air-filled Sail Parasity	0.055	L/L	(Calculated, Eqaution S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, ps	2.650	g/cm ³	(Default)
Dry Sail Bulk Density, ρ_b	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.118	ĽKg	(Calculated, Equation S19)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, K_{oc}	58.900	L/Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0,300	m/year	(Default)
Tier 1 Soil Remediation Objectives	16.900	mg/kg	(Soil Sample SB1)

Site:	Clark
Site Location:	427 West Madison, Oak Park, IL
LUST Incident:	20050027
Contaminant:	Toluene
Soil Type:	Silt Clay

Groundwater Remediation Objectives (Class I)	1.4	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, Cw	28,558	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, p _s	2.650	g/cm ³	(Default)
Dry Soil Bulk Density, pь	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.364	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, f _{oc}	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, K _{oc}	182.000	L/Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
infiltration Rate, I	0.300	m/year	(Default)
Fier 1 Soil Remediation Objectives	16.900	mg/kg	(SB1, Soil Component to Groundwate

Site:	Clark
Site Location:	427 West Madison, Oak Park, IL
LUST Incident:	20050027
Contaminant:	Toluene
Soil Type:	Silt Clay

Groundwater Remediation Objectives (Class I)	3.2	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, C _w	63.874	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, p _s	2.650	g/cm ³	(Default)
Dry Soil Bulk Density, p₀	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.364	: L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, f₀c	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, K _{oc}	182.000	L/Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remediation Objectives	37.800	mg/kg	(SB105 (4-6'), Soil Component to Grou

Site:	Clark
Site Location:	427 West Madison, Oak Park, IL
LUST Incident:	20050027
Contaminant:	Toluene
Soil Type:	Silt Clay

Groundwater Remediation Objectives (Class I)	1.4	mg/L	(Calculated, Equation S18)
*		<u></u>	
Target Soil Leachate Concentration, Cw	28.220	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	, L/L	(Calculated, Eqaution S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, p _s	2.650	g/cm ³	(Default)
Dry Soil Bulk Density, p _b	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.364	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, f _∞	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, K _∞	182.000	L/Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
nfiltration Rate, I	0.300	m/year	(Default)
ier 1 Soil Remediation Objectives	16.700	mg/kg	(SB106 (4-6'), Soil Component to Gro

Site: Clark

Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Ethylbenzene

Soil Type: Silt Clay

Tier 1 Soil Remdidation Objectives	39.700	mg/kg	(Soìl Sample SB104 (4-6'))
Infiltration Rate, I	0.300	m/year	(Default)
Dilution Factor, DF	20	unitless	(Default)
Organic Carbon Partition Coefficient, K_{∞}	363	L/Kg	(Table E, Appendix C)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Soil-Water Partition Coefficient, K _d	0.726	L/Kg	(Calculated, Equation S19)
Dry Soil Bulk Density, pb	1.700	g/cm ³	(Table B, Appendix C)
Soil Particle Density, ps	2.650	g/cm ³	(Default)
Total Soil Porosity, n	0.430	unitless	(Default)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Equation S21)
Henry's Law Constant, H'	0.323	unitless	(Table E, Appendix C)
Target Soil Leachate Concentration, C _w	41.489	mg/L	(Calculated, Equation S17)
Groundwater Remediation Objectives (Class I)	2.1	mg/L	(Calculated, Equation S18)

Site: Clark
Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Ethylbenzene
Soil Type: Silt Clay

36.264	mg/L	(Calculated, Equation S17)
0.323	unitless	(Table E, Appendix C)
0.055	L/L	(Calculated, Equation S21)
0.375	L/L	(Calculated, Equation S20)
0.042	unitless	(Table K, Appendix C)
8	m/year	(Table K, Appendix C)
0.430	unitless	(Default) ·
2.650	g/cm ³	(Default)
1.700	g/cm ³	(Table B, Appendix C)
0.726	·ЦКg	(Calculated, Equation \$19)
0.002	g/g	(Default)
363	L/Kg	(Table E, Appendix C)
20	unitless	(Default)
0.300	m/year	(Default)
34.700	mg/kg	(Soil Sample SB1)
	0.300 20 363 0.002 0.726 1.700 2.650 0.430 8 0.042 0.375 0.055 0.323	0.300 m/year 20 unitless 363 L/Kg 0.002 g/g 0.726 L/Kg 1.700 g/cm³ 2.650 g/cm³ 0.430 unitless 8 m/year 0.042 unitless 0.375 L/L 0.055 L/L 0.323 unitless

Site:	Clark	_
Site Location:	427 West Madison, Oak Park, IL	
LUST Incident:	20050027	_
Contaminant:	Ethylbenzene	_
Soil Type:	Silt Clay	_

Groundwater Remediation Objectives (Class I)	1.5	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, Cw	30.307	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.323	unitless	(Table E. Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Equation S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, ps	2.650	g/cm ³	(Default)
Dry Soil Bulk Density, p _b	1.700	g/cm³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.726	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, K _{oc}	363	L/Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remdidation Objectives	29.000	mg/kg	(Soil Sample SB105 (4-6'))

Site: Clark

Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Ethylbenzene

Soil Type: Silt Clay

Groundwater Remediation Objectives (Class I)	2.5	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, C _w	49.013	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.323	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Equation S21)
Water-filled Soil Porosity	⁰ 0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, ps	2.650	g/cm ³	(Default)
Dry Soil Bulk Density, p _b	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.726	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, Koc	363	L/Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remdidation Objectives	46.900	mg/kg	(Soil Sample SB106 (4-6'))
_	,		

Site: Clark

Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Ethylbenzene

Soil Type: Silt Clay

Groundwater Remediation Objectives (Class I)	3.1	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, C _w	61,659	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.323	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Equation S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix Ç)
Saturated Hydraulic Conductivity, K_{s}	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, ps	2,650	g/cm ³	(Default)
Dry Soil Bulk Density, p _b	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.726	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, f _{oc}	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, K_{oc}	363	L/Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remdidation Objectives	59,000	mg/kg	(Soil Sample SB108 (6-8'))

Site:	Clark
Site Location:	427 West Madison, Oak Park, IL
LUST Incident:	20050027
Contaminant:	Xylene (total)
Soil Type:	Silt Clay

Groundwater Remediation Objectives (Class I)	17.9	mq/L	(Calculated, Equation S18)	
Target Soil Leachate Concentration, C _w	357.054	mg/L	(Calculated, Equation S17)	
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)	
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)	
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)	
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)	
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)	
Total Soil Porosity, n	0.430	unitless	(Default)	
Soil Particle Density, p _s	2.650	g/cm ³	(Default)	
Dry Soil Bulk Density, p₅	1.700	g/cm ³	(Table B, Appendix C)	
Soil-Water Partition Coefficient, K _d	0.520	L/Kg	(Calculated, Equation S19)	
Organic Carbon Content of Soll, f _{oc}	0.002	g/g	(Default)	
Organic Carbon Partition Coefficient, K _{oc}	260.00	L/Kg	(Table E, Appendix C)	
Dilution Factor, DF	20	unitless	(Default)	
Infiltration Rate, I	0.300	m/year	(Default)	
Tier 1 Soil Remediation Objectives	267.00	mg/kg	(SB106 (4-6'),Soil Component to Groun	

Site: Clark

Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Xylene (total)

Soil Type: Silt Clay

Groundwater Remediation Objectives (Class I)	12.4	mg/L	(Calculated, Equation S18)
		·	
Target Soil Leachate Concentration, Cw	247.397	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.228	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Eqaution S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, ps	2.650	g/cm³	(Default)
Dry Soil Bulk Density, p _b	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K_{d}	0.520	ĽKg	(Calculated, Equation S19)
Organic Carbon Content of Soil, f _{oc}	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, K₀c	260.00	L/Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remediation Objectives	185.00	mg/kg	(SB1,Soil Component to Groundwate

Site: Clark

Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Methyl tert butyl ether (MTBE)

Soil Type: Silt Clay

Calculations:

Groundwater Remediation Objectives (Class I)	0.25	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, Cw	4.915	mg/L	(Calculated, Equation \$17)
Henry's Law Constant, H'	0.0241	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Equation S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, ps	2.650	g/cm ³	(Default)
Dry Soil Bulk Density, p _b	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.023	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, K _{oc}	11.5	L/Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remdidation Objectives	1.200	mg/kg	(Soil Sample SB107 (12-14'))

EP!

Site: Clark
Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Methyl tert butyl ether (MTBE)

Soil Type: Silt Clay

Tier 1 Soil Remdidation Objectives	0.998	mg/kg	(Soil Sample SB106 (12-14'))
Infiltration Rate, I	0.300	m/year	(Default)
Dilution Factor, DF	20	unitless	(Default)
Organic Carbon Partition Coefficient, K _{oc}	11.5	L/Kg	(Table E, Appendix C)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Soil-Water Partition Coefficient, K _d	0.023	Ļ/Kg	(Calculated, Equation S19)
Dry Soil Bulk Density, p _b	1.700	g/cm ³	(Table B, Appendix C)
Soil Particle Density, ps	2.650	g/cm ³	(Default)
Total Soil Porosity, n	0.430	unitless	(Default)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Equation S21)
Henry's Law Constant, H'	0.0241	unitless	(Table E, Appendix C)
Target Soil Leachate Concentration, Cw	4.088	mg/L ·	(Calculated, Equation S17)
Groundwater Remediation Objectives (Class I)	0.20	mg/L	(Calculated, Equation S18)

Site: Clark

Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Methyl tert butyl ether (MTBE)

Soil Type: Silt Clay

Groundwater Remediation Objectives (Class I)	1.65	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, Cw	32.972	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.0241	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Equation S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, Ks	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, ps	2.650	g/cm³	(Default)
Dry Soil Bulk Density, p₀	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.023	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, K _∞	11.5	ĽKg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remdidation Objectives	8.050	mg/kg	(Soil Sample SB106 (4-6'))

Site: Clark

Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Methyl tert butyl ether (MTBE)

Soil Type: Silt Clay

N .			
Tier 1 Soil Remdidation Objectives	1.060	mg/kg	(Soil Sample SB105 (12-14'))
Infiltration Rate, I	0.300	m/year	(Default)
Dilution Factor, DF	20	unitless	(Default)
Organic Carbon Partition Coefficient, K_{∞}	11.5	L/Kg	(Table E, Appendix C)
Organic Carbon Content of Soil, f_{oc}	0.002	g/g	(Default)
Soil-Water Partition Coefficient, K _d	0.023	L/Kg	(Calculated, Equation S19)
Dry Soil Bulk Density, p_{b}	1.700	g/cm ³	(Table B, Appendix C)
Soil Particle Density, ps	2.650	g/cm ³	(Default)
Total Soil Porosity, n	0.430	unitless	(Default)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Equation S21)
Henry's Law Constant, H'	0.0241	unitless	(Table E, Appendix C)
Target Soil Leachate Concentration, C _w	4.342	mg/L	(Calculated, Equation S17)
Groundwater Remediation Objectives (Class I)	0.22	mg/L	(Calculated, Equation S18)

Site:	Clark
Site Location:	427 West Madison, Oak Park, IL
LUST Incident:	20050027
Contaminant:	Methyl tert butyl ether (MTBE)
Soil Type:	Silt Clay

Tier 1 Soil Remdidation Objectives	3.240	mg/kg	(Soil Sample SB105 (4-6'))
Infiltration Rate, I	0.300	m/year 、	(Default)
Dilution Factor, DF	20	unitless	(Default)
Organic Carbon Partition Coefficient, K _{oc}	11.5	L/Kg	(Table E, Appendix C)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Soil-Water Partition Coefficient, K_d	0.023	L/Kg	(Calculated, Equation \$19)
Dry Soil Bulk Density, p _b	1.700	g/cm³	(Table B, Appendix C)
Soil Particle Density, ps	2.650	g/cm ³	(Default)
Total Soil Porosity, n	0.430	unitless	(Default)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Equation S21)
Henry's Law Constant, H'	0.0241	unitless	(Table E, Appendix C)
Target Soil Leachate Concentration, Cw	13.271	mg/L	(Calculated, Equation S17)
Groundwater Remediation Objectives (Class I)	0.66	mg/L	(Calculated, Equation S18)

Site:	Clark
Site Location:	427 West Madison, Oak Park, IL
LUST Incident:	20050027
Contaminant:	Methyl tert butyl ether (MTBE)
Soil Type:	Silt Clay

Groundwater Remediation Objectives (Class I)	0.09	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, Cw	1.806	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.0241	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Equation S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, ps	2.650	g/cm ³	(Default)
Dry Soil Bulk Density, p₅	1.700	g/cm³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.023	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, K_{∞}	11.5	L/Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remdidation Objectives	0.441	mg/k g	(Soil Sample SB102 (4-6'))
•			

Site: Clark

Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Methyl tert butyl ether (MTBE)

Soil Type: Silt Clay

Groundwater Remediation Objectives (Class I)	0.46	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, Cw	9.216	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	0.0241	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Equation S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, Ks	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, ps	2,650	g/cm³	(Default)
Dry Soil Bulk Density, p _b	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.023	L/Kg	(Calculated, Equation S19)
Organic Carbon Content of Soil, foc.	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, K _{oc}	11.5	L/Kg	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remdidation Objectives	2.250	mg/kg	(Soil Sample SB104 (6-8'))

Site: Clark

Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Methyl tert butyl ether (MTBE)

Soil Type: Silt Clay

Groundwater Remediation Objectives (Class I)	0.10	mg/L	(Calculated, Equation S18)
Target Soil Leachate Concentration, Cw	2.077	mg/L	(Calculated, Equation S17)
Henry's Law Constant, H'	<u>0</u> .0241	unitless	(Table E, Appendix C)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Equation S21)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Total Soil Porosity, n	0.430	unitless	(Default)
Soil Particle Density, p _s	2.650	g/cm ³	(Default)
Dry Soil Bulk Density, p _b	1.700	g/cm ³	(Table B, Appendix C)
Soil-Water Partition Coefficient, K _d	0.023	ĽKg	(Calculated, Equation S19)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Organic Carbon Partition Coefficient, Koc	11.5	L/Kg.	(Table E, Appendix C)
Dilution Factor, DF	20	unitless	(Default)
Infiltration Rate, I	0.300	m/year	(Default)
Tier 1 Soil Remdidation Objectives	0.507	mg/kg	(Soil Sample SB104 (4-6'))
			•

Site: Clark

Site Location: 427 West Madison, Oak Park, IL

LUST Incident: 20050027

Contaminant: Methyl tert butyl ether (MTBE)

Soil Type: Silt Clay

Tier 1 Soil Remdidation Objectives	2.020	mg/kg	(Soil Sample SB108 (6-8'))
Infiltration Rate, I	0.300	m/year	(Default)
Dilution Factor, DF	20	unitles s	(Default)
Organic Carbon Partition Coefficient, K₀c	11.5	L/Kg	(Table E, Appendix C)
Organic Carbon Content of Soil, foc	0.002	g/g	(Default)
Soil-Water Partition Coefficient, K _d	0.023	ĽKg	(Calculated, Equation S19)
Dry Soil Bulk Density, Pb	1,700	g/cm ³	(Table B, Appendix C)
Soil Particle Density, p _s	2.650	g/cm ³	(Default)
Total Soil Porosity, n	0.430	unitless	(Default)
Saturated Hydraulic Conductivity, K _s	8	m/year	(Table K, Appendix C)
Exponential in Equation 20, 1/(2b+3)	0.042	unitless	(Table K, Appendix C)
Water-filled Soil Porosity	0.375	L/L	(Calculated, Equation S20)
Air-filled Soil Porosity	0.055	L/L	(Calculated, Equation S21)
Henry's Law Constant, H'	0.0241	unitless	(Table E, Appendix C)
Target Soil Leachate Concentration, C _w	8.274	mg/L	(Calculated, Equation S17)
Groundwater Remediation Objectives (Class I)	0.41	mg/L_	(Calculate'd, Equation S18)

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB1, Benzene	
UST Incident No:	20050027	
Soil Contamination Concentration (SSL)	4.400	-
Concentration at the source (Cs)=	2.445 g/cm^3 or mg/L	(Field Measurement)
Concentration at a distance X (Cx)=	Tier	1 RO for Class I GW:
Distance along centerline of the		
plume coming from the source (X)=	61.05 ft = 1860.9 cn	n (Projected Plume Distan
First order degradation constant (lambda)=	= 0:0009 1/day	(Table E, Appendix C)
Aquifer hydraulic conductivity (K)=	81E-05 cm/sec = 1.5638 cm	n/ɗay (Field Measurement)
Hydraulic gradient (i)=	0.0500 cm/cm	(Field Measurement)
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Source width perpendicular to GW flow direction in horizontal plane (Sw)=	50 ft = 1524 cr	m (Field Measurement)
Source width perpendicular to GW flow direction in vertical plane (Sd)=	7 ft = 213.36 cr	m
Calculated Parameters	DO NOT ENTER VALUES HERE!	
Longitudinal dispersivity Ax= Transverse dispersivity Ay= Vertical dispersivity Az= Specific discharge U=	186.08753 cm 62.0291766 cm 9.3043765 cm 0.18184186 cm/day	(Calculated, Equation R (Calculated, Equation R (Calculated, Equation R (Calculated, Equation R
Specific discharge U= Sw/(4*SQRT(Ay*X)) B= Sd/(2*SQRT(Az*X)) C= Error function erf(B)=	1.12142009 0.81073838 0.88724424 To determine error functions	tion values,
Error function $erf(C)=$	0.74843522 see F46 & K46 in the lin	ear interpolation section.
Actual B value=	1.12142009 Actual C v	alue= 0.81073
Automatic calculations : Actual erf(B)	0.88724424 Actual erf(C)= 0.74843

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
		<u> </u>
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB1, Ethylbenzene	
LUST Incident No:	20050027	
Concentration at the source (Cs)=	g/cm^3 or mg/L (Calculated from	S (Field Measurement)
Concentration at a distance X (Cx)=	g/cm^3 or mg/L Tier 1 RO fo	or Class I GW : 0.7
Distance along centerline of the	Zan (1997)	Projected Plume Distance
plume coming from the source (X)=	2.06 ft = 62.653 cm	(Projected Fidine Distance
First order degradation constant (lambda)=	0:0030 1/day	(Table E, Appendix C)
Aquifer hydraulic conductivity (K)=	1.8/1E-05 cm/sec = 1.5638 cm/day	(Field Measurement)
Hydraulic gradient (i)=	0:0500 cm/cm	(Field Measurement)
Total soil porosity (theta T)≈	0.43 cm^3/cm^3	(Default)
Source width perpendicular to GW flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW flow direction in vertical plane (Sd)=	7 ft = 213.36 cm	
Calculated Parameters	DO NOT ENTER VALUES HERE!	
Longitudinal dispersivity Ax= Transverse dispersivity Ay= Vertical dispersivity Az= Specific discharge U= Sw/(4*SQRT(Ay*X)) B= Sd/(2*SQRT(Az*X)) C= Error function erf(B)= Error function erf(C)=	6.2652953 cm 2.0884318 cm 0.3132648 cm 0.1818419 cm/day 33.307655 24.079999 1 To determine error function valuates a company	
Actual B value=	33.307655 Actual C value=	24.079999
Automatic calculations : Actual erf(B)	1 Actual erf(C)=	1

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
LICT Incident No.	SB1, Toluene 20050027	
LUST Incident No:	20030021	
	·	
Concentration at the source (Cs)=	g/cm^3 or mg/L (Calculated from	S (Field Measurement)
		OLA LOCAL MANAGEMENT CONTROL
Concentration at a distance X (Cx)=	g/cm^3 or mg/L Tier 1 RO fo	or Class I GW :
	1	
Distance along centerline of the	0 :19 ft = 5.7507 cm	(Projected Plume Distance
plume coming from the source (X)=	0.19 ft = 5.7507 cm	(1 Tojootod 1 lamo bistanso
First order degradation constant (lambda)=	0.0110 1/day	(Table E, Appendix C)
First order degradation constant (lambda)-	Market Market Control of the Control	
Aquifer hydraulic conductivity (K)=	1.5638 cm/day	(Field Measurement)
Hydraulic gradient (i)=	(1000000000000000000000000000000000000	(Field Measurement)
		(T) (C) (1)
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
C (Att)		
Source width perpendicular to GW flow direction in horizontal plane (Sw)≃	50 ft = 1524 cm	(Field Measurement)
flow direction in florizontal plane (5w)~	702 I	(1010 1110 1111 1111)
Source width perpendicular to GW		
flow direction in vertical plane (Sd)=	9 213.36 cm	
, , ,		
Calculated Parameters	DO NOT ENTER VALUES HERE!	•
	0.57506506	(Calculated, Equation R16
Longitudinal dispersivity Ax=	0.57506596 cm 0.19168865 cm	(Calculated, Equation R17
Transverse dispersivity Ay=		(Calculated, Equation R18
Vertical dispersivity Az=	0.0287533 cm	•
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R19
Sw/(4*SQRT(Ay*X)) B=	362.884102	
Sd/(2*SQRT(Az*X)) C=	262.349563	
Error function erf(B)=	1 To determine error function valu	
Error function erf(C)=	1 see F46 & K46 in the linear inter	rpolation section.
	362.884102 Actual C value=	262.34956
Actual B value=	362.884102 Actual C value=	202.34930
Automatic calculations: Actual orf/D)	1 Actual erf(C)=	11
Automatic calculations : Actual erf(B)	/ lotted cit(0)	

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
lau I	Tot 1	· · · · · · · · · · · · · · · · · · ·
Site Location:	Clark	
	427 West Madison, Oak Park, IL	
LUST Incident No:	SB1, Xylenes 20050027	
Coot incident No.	120030027	
Concentration at the source (Cs)=	12:4 g/cm^3 or mg/L	(Field Measurement)
		DO C. O'CHALLOW, TOO
Concentration at a distance X (Cx)=	10.0 g/cm^3 or mg/L Tier 1	RO for Class I GW: 10.0
Distance along centerline of the	1.07 ft = 32.501 cm	(Projected Plume Distance
plume coming from the source (X)=	1307 II 2 32.30 I GIII	(1 Tojootod 1 Tarrio Diotarros
First order degradation constant (lambda)=	0:0019 1/day	(Table E, Appendix C)
First order degradation constant (lambda)-	, rody	(12,000)
Aquifer hydraulic conductivity (K)=	1,81E-05 cm/sec = 1.5638 cm/s	day (Field Measurement)
Hydraulic gradient (i)=	0.0773 cm/cm	(Field Measurement)
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
,		
Source width perpendicular to GW	70 H _ 1524 cm	(Field Measurement)
flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Fleid Measurement)
Source width perpendicular to GW		
flow direction in vertical plane (Sd)≈	7 ft = 213.36 cm	
now uncodoff in vortical plants (ear)		
•		
Calculated Parameters	DO NOT ENTER VALUES HERE!	
Longitudinal dispersivit Ax=	3.25006334 cm	(Calculated, Equation R16
Transverse dispersivity Ay=	1.08335445 cm	(Calculated, Equation R17
Vertical dispersivity Az=	0.16250317 cm	(Calculated, Equation R18
Specific discharge U=	0.28112752 cm/day	(Calculated, Equation R19
Sw/(4*SQRT(Ay*X)) B=	64.2086854	
Sd/(2*SQRT(Az*X)) C=	46.4201116	
Error function erf(B)=	1 To determine error function	n values.
• •	1 see F46 & K46 in the linea	
Error function erf(C)=	1 See 1 40 & K40 III tile lines	ii interpolation socion.
Actual B value=	64.2086854 Actual C value	ue= 46.420112
neward value	, 100001 0 1011	
Automatic calculations : Actual erf(B)	1 Actual erf(C)	= 1

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB102 (4-6'), Benzene	
LUST Incident No:	20050027	
Sail Contaction Connectedion (SSI)	0.571	
Soil Contamination Concentration (SSL)	0.571 0.090 g/cm^3 or mg/L	(Field Measurement)
Concentration at the source (Cs)≃	g/cm o or mg/L	(ioid insulations,
Concentration at a distance X (Cx)=	0:005 g/cm^3 or mg/L Tier 1 R	RO for Class I GW :
Distance along centerline of the		
plume coming from the source (X)=	24.00 ft = 731.55 cm	(Projected Plume Distance
First order degradation constant (lambda)=	0.0009 1/day	(Table E, Appendix C)
Aquifer hydraulic conductivity (K)=	1:81E=05 cm/sec = 1.5638 cm/da	y (Field Measurement)
Hydraulic gradient (i)=	2.0:0500 cm/cm	(Field Measurement)
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
, ,		
Source width perpendicular to GW flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Community and and and a CVA		
Source width perpendicular to GW flow direction in vertical plane (Sd)=	7 ft = 213.36 cm	
Calculated Parameters	DO NOT ENTER VALUES HERE!	
Longitudinal dispersivity Ax=	73.154604 cm	(Calculated, Equation R16
Transverse dispersivity Ay=	24.384868 cm	(Calculated, Equation R17
Vertical dispersivity Az=	3.6577302 cm	(Calculated, Equation R18
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R19
Sw/(4*SQRT(Ay*X)) B=	2.85262011	•
Sd/(2*SQRT(Az*X)) C=	2.06232137	
Error function erf(B)=	0.99994519 To determine error function	values,
Error function erf(C)=	0.99646075 see F46 & K46 in the linear i	
Actual B value=	2.85262011 Actual C value	= 2.0623214
, total p ton-		
Automatic calculations : Actual erf(B)	0.99994519 Actual erf(C)=	0.9964608

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
site Education.	427 West Madison, Oak Park, Illinois	
	SB102 (12-14'), Benzene	
LUST Incident No:	20050027	
Soil Contamination Concentration (SSL)	0.095	
Concentration at the source (Cs)=	0:014 g/cm^3 or mg/L	(Field Measurement)
Concentration at a distance X (Cx)≐	30.005 g/cm^3 or mg/L Tier 1 RO f	or Class I GW:
Distance along centerline of the		
plume coming from the source (X)=	7.58 ft = 231.09 cm	(Projected Plume Distanc
First order degradation constant (lambda)=	0.0009 1/day	(Table E, Appendix C)
Aquifer hydraulic conductivity (K)≍	1.5638 cm/day	(Field Measurement)
Hydraulic gradient (i)=	0.0500 cm/cm	(Field Measurement)
Total soil porosity (theta T)=	**************************************	(Default)
Source width perpendicular to GW flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW flow direction in vertical plane (Sd)=	7 ft = 213.36 cm	
Calculated Parameters	DO NOT ENTER VALUES HERE!	
Langitudinal dispossivity Av-	23.1088869 cm	(Calculated, Equation R1
Longitudinal dispersivity Ax= Transverse dispersivity Ay=	7.70296231 cm	(Calculated, Equation R1
Transverse dispersivity Ay- Vertical dispersivity Az=	1.15544435 cm	(Calculated, Equation R
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R
Specific discharge 0- Sw/(4*SQRT(Ay*X)) B=	9.03039143	A = 100 = 10 modern and an advanced at 1 a s
Sd/(2*SQRT(Az*X))	6.52858371	
Error function erf(B)=	1 To determine error function valu	les.
Error function en(B)=	1 see F46 & K46 in the linear inte	
		· ·
Actual B value=	9.03039143 Actual C value=	6.528583
Automatic calculations : Actual erf(B)	1 Actual erf(C)=	

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
54. L	Ton. 1	
Site Location:	Clark	
	427 West Madison, Oak Park, Illinoi	.8
LUST Incident No:	SB102 (4-6'), MTBE	
LOGT Incident No.	120030027	
Soil Contamination Concentration (SSL)		
Concentration at the source (Cs)=	0:09 g/cm^3 or mg/L	(Field Measurement)
Concentration at a distance X (Cx)=	0.07 g/cm^3 or mg/L	Tier 1 RO for Class I GW : 0.07
Distance along centerline of the		·
plume coming from the source (X)=	49.12 ft = 1497	7.3 cm (Projected Plume Distanc
First order degradation constant (lambda)=	0.0000 1/day	•
Aquifer hydraulic conductivity (K)=	1.81E-05 cm/sec = 1.563	84 cm/day (Field Measurement)
Hydraulic gradient (i)=	0.0500 cm/cm	(Field Measurement)
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Source width perpendicular to GW		
flow direction in horizontal plane (Sw)=	50.00 ft = 15	24 cm (Field Measurement)
Source width perpendicular to GW	·	
flow direction in vertical plane (Sd)=	6.56 ft = 199.9	98 cm
		•
Calculated Parameters	DO NOT ENTER VALUES HERE	Ξ!
Longitudinal dispersivityAx=	149.727442 cm	(Calculated, Equation R1
Transverse dispersivity Ay=	49.9091473 cm	(Calculated, Equation R1
Vertical dispersivity Az=	7.4863721 cm	(Calculated, Equation R1
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R1
Sw/(4*SQRT(Ay*X)) B=	1.39374781	(Caloulatou, Equation 1/1
	0.94451381	
Sd/(2*SQRT(Az*X)) C=		function values
Error function erf(B)=	0.95128279 To determine error	
Error function erf(C)=	0.81836699 see F46 & K46 in th	e linear interpolation section.
Actual B value=	1.39374781 Actua	C value= 0.9445138
Automatic calculations : Actual erf(B)	0.95128279 Actua	l erf(C)= 0.818367

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
		`
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
LUCTING	SB104 (4-6'), Benzene 20050255	
LUST Incident No:	20030233	
Soil Contamination Concentration (SSL)	5.810	
Concentration at the source (Cs)=	g/cm^3 or mg/L	(Field Measurement)
Concentration at a distance X (Cx)=	0.005 g/cm^3 or mg/L Tier 1 RO	for Class I GW :
Distance along centerline of the		•
plume coming from the source (X)=	48:15 ft = 1467.5 cm	(Projected Plume Distan
First order degradation constant (lambda)=	0:0009 1/day	(Table E, Appendix C)
That order degradation constant (idinada)	Sales and the sa	·
Aquifer hydraulic.conductivity (K)=	1.81E-05 cm/sec = 1.5638 cm/day	(Field Measurement)
Hydraulic gradient (i)=	0.0500 cm/cm	(Field Measurement)
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Source width perpendicular to GW	4504	(Field Messurement)
flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW		
flow direction in vertical plane (Sd)=	ft = 213.36 cm	
Calculated Parameters	DO NOT ENTER VALUES HERE!	
Calculated Farameters		
Longitudinal dispersivity Ax=	146.750413 cm	(Calculated, Equation R
Transverse dispersivity Ay=	48.9168045 cm	(Calculated, Equation R
Vertical dispersivity Az=	7.33752067 cm	(Calculated, Equation R
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R
Sw/(4*SQRT(Ay*X)) B=	1.42202185	
Sd/(2*SQRT(Az*X)) C=	1.0280605	
Error function erf(B)=	0.95567918 To determine error function val	
Error function erf(C)=	0.85402508 see F46 & K46 in the linear inte	erpolation section.
Actual B value=	1.42202185 Actual C value=	1.02806
Automatic calculations : Actual erf(B)	0.95567918 Actual erf(C)=	0.85402

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark 427 West Madison, Oak Park, Illinois SB104 (6-8'), Benzene	
LUST Incident No:	20050027	
Soil Contamination Concentration (SSL) Concentration at the source (Cs)=	12.500 1/809 g/cm^3 or mg/L	(Field Measurement)
Concentration at a distance X (Cx)=	0:005 g/cm^3 or mg/L Tier 1 RO	for Class I GW : 0.005
Distance along centerline of the plume coming from the source (X)=	56.37 ft = 1718.1 cm	(Projected Plume Distance
First order degradation constant (lambda)=	0.0009 1/day	(Table E, Appendix C)
Aquifer hydraulic conductivity (K)=	1.81E-05 cm/sec = 1.5638 cm/day	(Field Measurement)
Hydraulic gradient (i)=	0.0500 cm/cm	(Field Measurement)
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Source width perpendicular to GW flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW flow direction in vertical plane (Sd)=	ft = 213.36 cm	
Calculated Parameters	DO NOT ENTER VALUES HERE!	:
Longitudinal dispersivity Ax= Transverse dispersivity Ay= Vertical dispersivity Az= Specific discharge U= Sw/(4*SQRT(Ay*X)) B= Sd/(2*SQRT(Az*X)) C= Error function erf(B)= Error function erf(C)=	171.809196 cm 57.269732 cm; 8.59045979 cm 0.18184186 cm/day 1.21461656 0.87811541 0.91415368 To determine error function val 0.78570527 see F46 & K46 in the linear inter-	
Actual B value=	1.21461656 Actual C value=	0.8781154
Automatic calculations : Actual erf(B)	0.91415368 Actual erf(C)=	0.7857053

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
•	427 West Madison, Oak Park, Illinois	
·	SB104(4-6'), Ethylbenzene	
LUST Incident No:	20050027	
Concentration at the source (Cs)=	g/cm^3 or mg/L (Calculated from	n S (Field Measurement)
Concentration at a distance X (Cx)=	07 g/cm^3 or mg/L Tier 1 RO	for Class I GW : 100 17
Distance along centerline of the		
plume coming from the source (X)=	2.42 ft = 73.879 cm	(Projected Plume Distance
First order degradation constant (lambda)=	0:0030 1/day	(Table E, Appendix C)
Aquifer hydraulic conductivity (K)=	81E-05 cm/sec = 1.5638 cm/day	(Field Measurement)
Hydraulic gradient (i)=	010500 cm/cm	(Field Measurement)
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Source width perpendicular to GW flow direction in horizontal plane (Sw)=	250 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW flow direction in vertical plane (Sd)=	7 ft = 213.36 cm	
Calculated Parameters	DO NOT ENTER VALUES HERE!	
Longitudinal dispersivity Ax= Transverse dispersivity Ay=	7.3878616 cm 2.4626205 cm	(Calculated, Equation R16 (Calculated, Equation R1)
Vertical dispersivity Az=	0.3693931 cm	(Calculated, Equation R1
Specific discharge U=	0.1818419 cm/day	(Calculated, Equation R1
Sw/(4*SQRT(Ay*X)) B=	28.246644	(an emission) Educated 11.
•	20.421106	
	1 To determine error function val	
Error function erf(B)= Error function erf(C)=	1 see F46 & K46 in the linear inte	
Actual B value=	28.246644 Actual C value=	20.421106
, totals by the same		<u></u>
Automatic calculations : Actual erf(B)	1 Actual erf(C)=	1

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB104 (4-6'), MTBE	
LUST Incident No:	20050027	
Soil Contamination Concentration (SSL)		
Concentration at the source (Cs)=	0.1 g/cm^3 or mg/L	(Field Measurement)
Consentration at the Source (Co)		
Concentration at a distance X (Cx)=	0.07 g/cm^3 or mg/L Tier 1 RO fo	or Class I GW : 0.07
• • • • • • • • • • • • • • • • • • • •		•
Distance along centerline of the		m t t Dha Distance
plume coming from the source (X)=	55.55 ft = 1693.2 cm	(Projected Plume Distance
	***************************************	(Table E. Annondiy C)
First order degradation constant (lambda)=	0:0000 1/day	(Table E, Appendix C)
A	1,81E-05 cm/sec = 1.56384 cm/day	(Field Measurement)
Aquifer hydraulic conductivity (K)=	13d 12-00 Citi/Sec = 1.00001 offices	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
I bushesida mandionak (i \=	0.0500 cm/cm	(Field Measurement)
Hydraulic gradient (i)=	e.g.ses	,
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Total don porodity (triotal 1)	***************************************	
Source width perpendicular to GW		
flow direction in horizontal plane (Sw)=	50 00 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW	400,000	
flow direction in vertical plane (Sd)=	6,56 ft = 199.998 cm	
•		
Calculated Parameters	DO NOT ENTER VALUES HERE!	
Calculated Farameters		
Longitudinal dispersivity Ax=	169.322809 cm	(Calculated, Equation R16
Transverse dispersivity Ay=	56.4409363 cm	(Calculated, Equation R17
Vertical dispersivity Az=	8,46614044 cm	(Calculated, Equation R18
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R19
Opcomo dicertarge	1.23245235	
	0.83520724	
Sd/(2*SQRT(Az*X)) C=	0.91865788 To determine error function valu	AS
Error function erf(B)=		
Error function erf(C)=	0.76246127 see F46 & K46 in the linear inter	polation section.
A L ID values	1.23245235 . Actual C value≂	0.8352072
Actual B value=	7.20270200 Actual O value	0,0002072
Automatic calculations : Actual erf(B)	0.91865788 Actual erf(C)=	0.7624613
Automatic calculations . Actual on (D)		<u> </u>

Exposure Pathway:	Groundwater Ingestion		
Receptor:	Residential		
Site Location:	Clark		
	427 West Madison, Oak Park, Illino	is	
	SB104 (6-8'), MTBE		
LUST Incident No:	20050027		
O H O and the transfer (CCL)			
Soil Contamination Concentration (SSL)	DAC - lam A2 as mall		(Field Measurement)
Concentration at the source (Cs)=	0.46 g/cm^3 or mg/L		(Field Medadrement)
Concentration at a distance X (Cx)=	0.07 g/cm^3 or mg/L	Tier 1 RO for	Class I GW : 0.07
			•
Distance along centerline of the	- 475	0.3 cm	(Projected Plume Distance
plume coming from the source (X)=	155.85 ft = 475	0.316111	(Frojected Flame Distance
First order degradation constant (lambda)=	0:0000 1/day		(Table E, Appendix C)
That order degradation constant (tambas)	,		
Aquifer hydraulic conductivity (K)=	1.81E-05 cm/sec = 1.560	384 cm/day	(Field Measurement)
, iquito, ity alcumo contained by (19			
Hydraulic gradient (i)=	0.0500 cm/cm		(Field Measurement)
Total soil porosity (theta T)=	0.43 cm^3/cm^3	5	(Default)
Source width perpendicular to GW			
flow direction in horizontal plane (Sw)=	50,00 ft = 1	524 cm	(Field Measurement)
, , ,		······································	•
Source width perpendicular to GW			
flow direction in vertical plane (Sd)=	6.56 ft = 199.	998 cm	
Calculated Parameters	DO NOT ENTER VALUES HER	RE!	
	475 000450		(Calculated, Equation R16
Longitudinal dispersivity Ax=	475.026159 cm		• •
Transverse dispersivity Ay=	158.342053 cm	•	(Calculated, Equation R17
Vertical dispersivity Az≂	23.7513079 cm		(Calculated, Equation R18
Specific discharge U=	0.18184186 cm/day		(Calculated, Equation R19
Sw/(4*SQRT(Ay*X)) B=	0.43930695		
Sd/(2*SQRT(Az*X)) / C=	0.29770916		
Error function erf(B)=	0.46558065 To determine error	r function value	S,
Error function erf(C)=	0.3262626 see F46 & K46 in t		
Actual B value=	0.43930695 Actu	al C value=	0.2977092
ACCURATE VALUE		•	
Automatic calculations : Actual erf(B)	0.46558065 Actu	al erf(C)=	0.3262626

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	·
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB105 (4-6'), Benzene	
LUST Incident No:	20050027	
	40.700	
Soil Contamination Concentration (SSL)	18.700	(Field Measurement)
Concentration at the source (Cs)=	1.500 g/cm^3 or mg/L	(Field Measurement)
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tior 1 PO f	or Class I GW:
Concentration at a distance X (Cx)=	0.005 g/cm ³ or mg/L Tier 1 RO f	Ul Class I OVV .
Distance along centerline of the		
plume coming from the source (X)=	56.00 ft = 1706.8 cm	(Projected Plume Distance
plume coming from the source (x)-	· 1700.0 011	(1,0)00000.
First order degradation constant (lambda)=	0.0009 1/day	(Table E, Appendix C)
This order degradation constant (lambda)	, adj	(12.2.2.1)
Aquifer hydraulic conductivity (K)=	1.81E-05 cm/sec = 1.5638 cm/day	(Field Measurement)
Hydraulic gradient (i)=	6.7% 0.0500 cm/cm	(Field Measurement)
()		
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Source width perpendicular to GW		
flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW		
flow direction in vertical plane (Sd)=	7 ft = 213.36 cm	
	•	·
	DO NOT ENTER VALUES HERE!	
Calculated Parameters	DO NOT ENTER VALUES HERE:	
to a situational dispersivity Ave	170.682018 cm	(Calculated, Equation R16
Longitudinal dispersivity Ax=	56.8940061 cm	(Calculated, Equation R17
Transverse dispersivity Ay=		, , ,
Vertical dispersivity Az=	8.53410091 cm	(Calculated, Equation R18
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R19
Sw/(4*SQRT(Ay*X)) B=	1.22263784	
Sd/(2*SQRT(Az*X)) C=	0.88391445	
Error function erf(B)=	0.91620369 To determine error function value	ıes,
Error function erf(C)=	0.78871632 see F46 & K46 in the linear inte	
Life fallows:		,
Actual B value=	1.22263784 Actual C value=	0.8839145
A STATE OF THE STA		-
Automatic calculations : Actual erf(B)	0.91620369 Actual erf(C)=	0.7887163

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
Site Location:	427 West Madison, Oak Park, Illinois	
	SB105 (12-14'), Benzene	
LUST Incident No:	20050027	
Soil Contamination Concentration (SSL)	4.400	
Concentration at the source (Cs)=	0.606 g/cm^3 or mg/L	(Field Measurement)
O	Tior 1 PO	for Class I GW :
Concentration at a distance X (Cx)=	7 July 1 RO grand 1 RO	IOI Oldss I OVV .
Distance along centerline of the		
plume coming from the source (X)=	45.74 ft = 1394.2 cm	(Projected Plume Distance
,		
First order degradation constant (lambda)=	1/day	(Table E, Appendix C)
•		
	4.5639 cm/dp/	(Field Measurement)
Aquifer hydraulic conductivity (K)=	81E-05 cm/sec = 1.5638 cm/day	(Field Weasurement)
Lludroutic aradiant (i)-	0.0500 cm/cm	(Field Measurement)
Hydraulic gradient (i)=	om/om	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Total soil porosity (theta T)=	@.43 cm^3/cm^3	(Default)
,		
Source width perpendicular to GW	Manager of transfer or Advances and	(P***
flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
CONTRACTOR OF CO		
Source width perpendicular to GW flow direction in vertical plane (Sd)=	7 ft = 213.36 cm	
now direction in vertical plane (5d)-	270.00 om	
Calculated Parameters	DO NOT ENTER VALUES HERE!	•
Longitudinal dispersivity Ax=	139.422615 cm	(Calculated, Equation R16
Transverse dispersivity Ay=	46.4742049 cm	(Calculated, Equation R17
Vertical dispersivity Az=	6.97113073 cm	(Calculated, Equation R18
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R1
Sw/(4*SQRT(Ay*X)) B=	1.49676073	
Sd/(2*SQRT(Az*X)) C=	1.08209348	
Error function erf(B)=	0.96571814 To determine error function value	Jes,
Error function erf(C)=	0.87406026 see F46 & K46 in the linear inte	
		
Actual B value=	1.49676073 Actual C value=	1.0820935
		0.071000
Automatic calculations : Actual erf(B)	0.96571814 Actual erf(C)=	0.8740603

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB105 (4-6'), Toluene	
LUST Incident No:	20050027	
Concentration at the source (Cs)=	3:2 g/cm^3 or mg/L (Calculated from	n S (Field Measurement)
oomooning growth at the country		
Concentration at a distance X (Cx)=	1.0 g/cm^3 or mg/L Tier 1 RO	for Class I GW : 🌉 💹 1:0
Distance along centerline of the		
plume coming from the source (X)=	0.70 ft = 21.47 cm	(Projected Plume Distance
First order degradation constant (lambda)=	0.0110 1/day	(Table E, Appendix C)
•		
	1.5638 cm/day	(Field Measurement)
Aquifer hydraulic conductivity (K)=	1.81E-05 cm/sec = 1.5638 cm/day	(Tield Measurement)
11. 1. P	0:0500 cm/cm	(Field Measurement)
Hydraulic gradient (i)=	CHI/CHI	(1 tota Mododiomont)
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Total son porosity (theta 1)	New Special State (Section 2017) and the Control of Section 2017 (Sectio	, ,
Source width perpendicular to GW		
flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW		
flow direction in vertical plane (Sd)=	7 ft = 213.36 cm	
•		
·	DO NOT ENTED VALUES HERE!	
Calculated Parameters	DO NOT ENTER VALUES HERE!	· ·
t as alterdinal diaparaisity Ave	2.14700673 cm	(Calculated, Equation R16
Longitudinal dispersivity Ax=	0.71566891 cm	(Calculated, Equation R17
Transverse dispersivity Ay=	0.10735034 cm	(Calculated, Equation R18
Vertical dispersivity Az=	[(Calculated, Equation R19
Specific discharge U=	0.18184186 cm/day	Calculated, Equation 1118
Sw/(4*SQRT(Ay*X)) B=	97.1968517	
Sd/(2*SQRT(Az*X)) C=	70.2691338	
Error function erf(B)=	1 To determine error function val	
Error function erf(C)=	1 see F46 & K46 in the linear inte	erpolation section.
		
A stand B volume	97 1968517 Actual C value=	I 70.269134
Actual B value≂	97.1968517 Actual C value=	70.269134

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB105(4-6'), Ethylbenzene	
LUST Incident No;	20050027	
Concentration at the source (Cs)=	g/cm^3 or mg/L (Calculated from	S (Field Measurement)
Concentration at a distance X (Cx)=	g/cm^3 or mg/L Tier 1 RO fo	r Class I GW :
Distance along centerline of the		
plume coming from the source (X)=	1.63 ft = 49.715 cm	(Projected Plume Distance
—	2.44xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Table E, Appendix C)
First order degradation constant (lambda)=	1/day	(Table E, Appendix O)
Aquifer hydraulic conductivity (K)=	1.5638 cm/day	(Field Measurement)
Hydraulic gradient (i)=	0.0500 cm/cm	(Field Measurement)
Total soil porosity (theta T)=	70.43 cm^3/cm^3	(Default)
Source width perpendicular to GW flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW flow direction in vertical plane (Sd)=	### = 213.36 cm	
Calculated Parameters	DO NOT ENTER VALUES HERE!	•
Longitudinal dispersivity Ax= Transverse dispersivity Ay= Vertical dispersivity Az= Specific discharge U= Sw/(4*SQRT(Ay*X)) B= Sd/(2*SQRT(Az*X)) C=	4.9715319 cm 1.6571773 cm 0.2485766 cm 0.1818419 cm/day 41.975451 30.346442	(Calculated, Equation R1 (Calculated, Equation R1 (Calculated, Equation R1 (Calculated, Equation R1
Error function $erf(B)=$ Error function $erf(C)=$	1 To determine error function value 1 see F46 & K46 in the linear inter	
Actual B value=	41.975451 Actual C value=	30.346442
Automatic calculations : Actual erf(B)	1 Actual erf(C)=	

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Ill	inois
·	SB105 (4-6'), MTBE	
LUST Incident No:	20050027	
Soil Contamination Concentration (SSL)	(Field Measurement)
Concentration at the source (Cs)≃	0.66 g/cm^3 or mg/L	(Fleid Wedsdremond)
Concentration at a distance X (Cx)=	0.07 g/cm^3 or mg/L	Tier 1 RO for Class I GW : 0.07
Distance along centerline of the		
plume coming from the source (X)=	189.54 ft = 5	7777.1 cm (Projected Plume Distance
plante coming north the source (74)		
First order degradation constant (lambo	ia)= 0.0000 1/day	(Table E, Appendix C)
Thotordor dogradation contains (inchise	200000000000000000000000000000000000000	
Aquifer hydraulic conductivity (K)=	1,81E-05 cm/sec = 1.	56384 cm/day (Field Measurement)
· .		
Hydraulic gradient (i)=	0.0500 cm/cm	(Field Measurement)
		(D - (H)
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
- 1 - 1 - CVA		
Source width perpendicular to GW)= 50.00 ft =	1524 cm (Field Measurement)
flow direction in horizontal plane (Sw)- <u>3636</u> 11 -	1024 Citi (1 loid Woodbar officers)
Source width perpendicular to GW		
flow direction in vertical plane (Sd)=	6,56 ft = 19	99.998.cm
now direction in vertical plane (50)-	μ. <u> </u>	
Calculated Parameters	DO NOT ENTER VALUES H	ERE!
		•
Longitudinal dispersivityAx≈	577.707929 cm	(Calculated, Equation R16
Transverse dispersivity Ay=	192.56931 cm	(Calculated, Equation R17
Vertical dispersivity Az=	28.8853964 cm	(Calculated, Equation R18
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R19
Sw/(4*SQRT(Ay*X)) B=	0.36122456	· · · · ·
Sd/(2*SQRT(Az*X)) C=	0.24479435	
Error function erf(B)=	0.39054299 To determine e	rror function values,
Error function erf(C)=		in the linear interpolation section.
End function (C)		
Actual B value=	0.36122456 A	ctual C value= 0.2447943
Notice to the second		
Automatic calculations : Actual erf(B)	0.39054299 A	ctual erf(C)= 0.2708011

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illir	nois
	SB105 (12-14'), MTBE	
LUST Incident No:	20050027	
Soil Contamination Concentration (SSL)	000	(Field Measurement)
Concentration at the source (Cs)=	0.22 g/cm^3 or mg/L	(Field Measurement)
O and the transfer of the state	0.07 g/cm^3 or mg/L	Tier 1 RO for Class I GW: 0.07
Concentration at a distance X (Cx)=	g.o./ g/cm 3 or mg/c	THE TYCHOLORIST SW.
Distance along contarling of the		
Distance along centerline of the plume coming from the source (X)=	101.56 ft = 30	95.5 cm (Projected Plume Distance
plume coming from the source (x)-		(
First order degradation constant (lambda)=	0:0000 1/day	•
Prist order degradation constant (idmodd)		
		•
Aquifer hydraulic conductivity (K)=	1.81E-05 cm/sec = 1.5	6384 cm/day (Field Measurement)
, identify a series and it is a series of the series of th		
Hydraulic gradient (i)=	0.0500 cm/cm	(Field Measurement)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Total soil porosity (theta T)≂	0:43 cm^3/cm^3	(Default)
Source width perpendicular to GW		
flow direction in horizontal plane (Sw)≈	50.00 ft =	1524 cm (Field Measurement)
Source width perpendicular to GW		0.000
flow direction in vertical plane (Sd)=	6.56 ft = 19	9.998 cm
O. L. Sate d Doromotoro	DO NOT ENTER VALUES HE	-RE1
Calculated Parameters	DO NOT ENTER VALUE OF IL	
Longitudinal dispersivityAx=	309.547629 cm	(Calculated, Equation R16
	103.182543 cm	(Calculated, Equation R17
Transverse dispersivity Ay=	15.4773815 cm	(Calculated, Equation R18
Vertical dispersivity Az=		(Calculated, Equation R19
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R 19
Sw/(4*SQRT(Ay*X)) B=	0.67415246	
Sd/(2*SQRT(Az*X)) C=	0.45685905	
Error function erf(B)≈	0.65961032 To determine en	
Error function erf(C)=	0.48178311 see F46 & K46 i	n the linear interpolation section.
Actual B value≍	0.67415246 Ac	tual C value= 0.4568591
		F0.405-20-
Automatic calculations: Actual erf(B)	0.65961032 Ac	tual erf(C)= 0.4817831

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illino	is
	SB106 (4-6'), Benzene	
LUST Incident No:	20050027	
Sail Contamination Concentration (SSI)	19.100	•
Soil Contamination Concentration (SSL)	2.764 g/cm^3 or mg/L	(Field Measurement)
Concentration at the source (Cs)=	Zanon grom o or mg/L	,
Concentration at a distance X (Cx)=	0:005 g/cm^3 or mg/L	Tier 1 RO for Class I GW:
Somethialion at a distance X (SX)-	William Company Compan	
Distance along centerline of the		
plume coming from the source (X)=	62.05 ft = 189	1.2 cm (Projected Plume Distance
planta doming water the above ()	3000 Called Annual Section Control Con	·
First order degradation constant (lambda)=	00009 1/day	(Table E, Appendix C)
, , , , , , , , , , , , , , , , , , ,		
Aquifer hydraulic conductivity (K)=	1.81E 05 cm/sec = 1.50	cm/day (Field Measurement)
•		•
Hydraulic gradient (i)=	0.0500 cm/cm	(Field Measurement)
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
4		
Source width perpendicular to GW		(5) (4) (4) (5) (6)
flow direction in horizontal plane (Sw)=	50 ft =1	524 cm (Field Measurement)
Source width perpendicular to GW	an province and the state of th	500
flow direction in vertical plane (Sd)=	7 ft = 210	3.36 cm
Calculated Parameters	DO NOT ENTER VALUES HER	· (F)
Calculated Parameters	DO NOT ENTER VACOUS TIES	
Longitudinal dispersivity Ax=	189.122563 cm	(Calculated, Equation R1
Transverse dispersivity Ay=	63.0408544 cm	(Calculated, Equation R1
• • •	9.45612816 cm	(Calculated, Equation R1
Vertical dispersivity Az=		(Calculated, Equation R1
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation 171
Sw/(4*SQRT(Ay*X)) B=	1.10342357	
Sd/(2*SQRT(Az*X)) C=	0.79772768	
Error function erf(B)=	0.88135268 To determine erro	
Error function erf(C)=	0.7407464 see F46 & K46 in	the linear interpolation section.
Actual B value=	1.10342357 Actu	aal C value= 0.7977277
		0.740740
Automatic calculations : Actual erf(B)	0.88135268 Actu	ual erf(C)= 0.7407464

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB106 (12-14'), Benzene	
LUST Incident No:	20050255	
Soil Contamination Concentration (SSL) Concentration at the source (Cs)=	3.800 0.550 g/cm^3 or mg/L	(Field Measurement)
Concentration at a distance X (Cx)=	0:005 g/cm^3 or mg/L Tier 1 RO fo	or Class I GW : 0.005
Distance along centerline of the plume coming from the source (X)=	44.89 ft = 1368.3 cm	(Projected Plume Distance
First order degradation constant (lambda)=	0.0009 1/day	(Table E, Appendix C)
Aquifer hydraulic conductivity (K)=	1.81E-05 cm/sec = 1.5638 cm/day	(Field Measurement)
Hydraulic gradient (i)=	0.0500 cm/cm	(Field Measurement)
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Source width perpendicular to GW flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW flow direction in vertical plane (Sd)=	7 ft = 213.36 cm	·
Calculated Parameters	DO NOT ENTER VALUES HERE!	
Longitudinal dispersivity Ax= Transverse dispersivity Ay= Vertical dispersivity Az= Specific discharge U= Sw/(4*SQRT(Ay*X)) B= Sd/(2*SQRT(Az*X)) C= Error function erf(B)= Error function erf(C)=	136.828395 cm 45.609465 cm 6.84141975 cm 0.18184186 cm/day 1.5251388 1.10260961 0.96898447 To determine error function valu 0.88108061 see F46 & K46 in the linear inter	
Actual B value=	1.5251388 Actual C value=	1.1026096
Automatic calculations : Actual erf(B)	0.96898447 Actual erf(C)=	0.8810806

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB106(4-6'), Toluene	
LUST Incident No:	20050027	
•		
Concentration at the source (Cs)=	g/cm^3 or mg/L (Calculated	from S(Field Measurement)
Concentration at a distance X (Cx)=	g/cm^3 or mg/L Tier 1	RO for Class I GW :
Distance along centerline of the		
plume coming from the source (X)=	0.19 ft = 5.7507 cm	(Projected Plume Distance
First order degradation constant (lambda)=	0.0110 1/day	(Table E, Appendix C)
	4.5029.00.1	. (Field Measurement)
Aquifer hydraulic conductivity (K)=	1.81E-05 cm/sec = 1.5638 cm/d	lay (Field Measurement)
Hydraulic gradient (i)=	0 0500 cm/cm	(Field Measurement)
Trydraulio gradiotic (t)	Back and College of the College of t	,
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Source width perpendicular to GW		
flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Commission of the commission of the CNN		
Source width perpendicular to GW	7 ft = 213.36 cm	
flow direction in vertical plane (Sd)=	213.30 GH	
Calculated Parameters	DO NOT ENTER VALUES HERE!	· ,
•		•
Longitudinal dispersivity Ax=	0.57506596 cm	(Calculated, Equation R16
Transverse dispersivity Ay=	0.19168865 cm	(Calculated, Equation R17
Vertical dispersivity Az=	0.0287533 cm	(Calculated, Equation R18
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R19
Sw/(4*SQRT(Ay*X)) B=	362.884102	
Sd/(2*SQRT(Az*X)) C=	262.349563	•
Error function erf(B)=	1 To determine error function	values,
Error function erf(C)=	1 see F46 & K46 in the linear	
Actual B value=	362.884102 Actual C value	e= 262.34956
A A A A A A A A A A A A A A A A A A A	Aptrol = 4(0)=	. F————————————————————————————————————
Automatic calculations : Actual erf(B)	1 Actual erf(C)=	· [

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB106(4-6'), Ethylbenzene	
LUST Incident No:	20050027	
Concentration at the source (Cs)=	g/cm^3 or mg/L (Calculated from	S (Field Measurement)
Concentration at a distance X (Cx)=	g/cm ³ or mg/L Tier 1 RO fo	or Class I GW :
Distance along centerline of the plume coming from the source (X)=	2:85 ft = 86.978 cm	(Projected Plume Distance
First order degradation constant (lambda)=	0:0030 1/day	(Table E, Appendix C)
Aquifer hydraulic conductivity (K)=	1.5638 cm/day	(Field Measurement)
Hydraulic gradient (i)=	0:0500 cm/cm	(Field Measurement)
Total soil porosity (theta T)=		(Default)
Source width perpendicular to GW flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW flow direction in vertical plane (Sd)=	ft = 213.36 cm	
Calculated Parameters	DO NOT ENTER VALUES HERE!	
Longitudinal dispersivity Ax= Transverse dispersivity Ay= Vertical dispersivity Az= Specific discharge U= Sw/(4*SQRT(Ay*X)) B= Sd/(2*SQRT(Az*X)) C= Error function erf(B)= Error function erf(C)=	8.6977744 cm 2.8992581 cm 0.4348887 cm 0.1818419 cm/day 23.992608 17.345622 1 To determine error function values see F46 & K46 in the linear interpretation.	
Actual B value=	23.992608 Actual C value=	17.345622
Automatic calculations : Actual erf(B)	1 Actual erf(C)=	1

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
Site Location:	427 West Madison, Oak Park, Illinois	
	SB106 (4-6'), MTBE	
LUST Incident No:	20050027	
Sail Contains the Consentration (SSI)		,
Soil Contamination Concentration (SSL)	1.65 g/cm^3 or mg/L	(Field Measurement)
Concentration at the source (Cs)=	grant 5 of Higre	(1 lold Model of Mary
Concentration at a distance X (Cx)=	0:07 g/cm^3 or mg/L Tier 1 R0	O for Class I GW : 0.07
Distance along centerline of the		(D.) (ID) Distance
plume coming from the source (X)=	305:25 ft = 9304.1 cm	(Projected Plume Distance
	0.0000 1/4-1	•
First order degradation constant (lambda)=	0:0000 1/day	
'		
Aguifer hydraulic conductivity (K)=	1,81E-05 cm/sec = 1.56384 cm/day	y (Field Measurement)
Hydraulic gradient (i)=	0.0500 cm/cm	(Field Measurement)
		(D = f= , , k)
Total soil porosity (theta T)=	0:43 cm^3/cm^3	(Default)
Source width perpendicular to GW		
flow direction in horizontal plane (Sw)=	50.00 ft = 1524 cm	(Field Measurement)
non anoston minorization prame (ass)		•
Source width perpendicular to GW		
flow direction in vertical plane (Sd)=	6.56 ft = 199.998 cm	
	•	
Calculated Parameters	DO NOT ENTER VALUES HERE!	
Calculated Parameters	DO NOT ENTER VALUES HERE.	
Longitudinal dispersivity Ax=	930.40777 cm	(Calculated, Equation R16
Transverse dispersivity Ay=	310.135923 cm	(Calculated, Equation R17
Vertical dispersivity Az=	46.5203885 cm	(Calculated, Equation R18
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R19
Sw/(4*SQRT(Ay*X)) B=	0.22429122	V =
Sd/(2*SQRT(Az*X))	0.15199748	
Error function erf(B)=	0.24890474 To determine error function v	alues
Error function erf(C)=	0.17019901 see F46 & K46 in the linear in	•
End function en(C)-	O. Tro 1000 1 366 1 40 & 1040 III the linear III	not policitori dobitori.
Actual B value=	0.22429122 Actual C value=	0.1519975
Automatic calculations : Actual erf(B)	0.24890474 Actual erf(C)=	0.170199
	·	

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
		· 1
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB106 (12-14'), MTBE	
LUST Incident No:	20050027	
Soil Contamination Concentration (SSL)		
Concentration at the source (Cs)=	0.2 g/cm^3 or mg/L	(Field Measurement)
- Consonitation at the Source (So)	9.000	<u> </u>
Concentration at a distance X (Cx)=	0:07 g/cm^3 or mg/L Tier 1 RO fo	or Class I GW: 0:07
Distance along centerline of the		
plume coming from the source (X)=	95.58 ft = 2913.3 cm	(Projected Plume Distanc∈
First order degradation constant (lambda)=	0,0000 1/day	
Aguifer hydraulic conductivity (K)=	1.81E-05 cm/sec = 1.56384 cm/day	(Field Measurement)
, iquio: ii, avaane eenaaeen ee, (ve)		
Hydraulic gradient (i)=	0.0500 cm/cm	(Field Measurement)
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Source width perpendicular to GW	50.00 ft = 1524 cm	(Field Measurement)
flow direction in horizontal plane (Sw)=	- 1324 CIII	(Fleid Medadileineric)
Source width perpendicular to GW		
flow direction in vertical plane (Sd)=	6.56 ft = 199.998 cm	
Calculated Parameters	DO NOT ENTER VALUES HERE!	
Landitudial diaparaivit Ave	291.330182 cm	(Calculated, Equation R16
Longitudinal dispersivity Ax=	97.1100606 cm	(Calculated, Equation R17
Transverse dispersivity Ay=	14.5665091 cm	(Calculated, Equation R18
Vertical dispersivity Az=		(Calculated, Equation R19
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation N 18
Sw/(4*SQRT(Ay*X)) B=	0.71630853	
Sd/(2*SQRT(Az*X)) C=	0.48542734	
Error function erf(B)=	0.68894613 To determine error function valu	
Error function erf(C)=	0.50760097 see F46 & K46 in the linear inter	polation section.
Actual B value=	0.71630853 Actual C value=	0.4854273
Automatic calculations : Actual erf(B)	0.68894613 Actual erf(C)=	0.507601
Automatic calculations . Actual ento)	7.0000 10 10	

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, IL	
	SB106, 4-6', Xylenes	
LUST Incident No:	20050027	
	<u> </u>	
Concentration at the source (Cs)=	17.9 g/cm^3 or mg/L	(Field Measurement)
		2.6
Concentration at a distance X (Cx)=	10.0 g/cm^3 or mg/L Tier 1 RC	O for Class I GW:
		•
Distance along centerline of the	2.99 ft = 91.161 cm	(Projected Plume Distance
plume coming from the source (X)=	2.99 ft = 91.161 cm	(1 Tojected) turne Bistarree
First and and demodation constant (lambda)	0.0019 1/day	(Table E, Appendix C)
First order degradation constant (lambda)=	0.00 is	(1000 =) (1000 =)
Aquifer hydraulic conductivity (K)=	1.81E-05 cm/sec = 1.5638 cm/day	(Field Measurement)
		•
Hydraulic gradient (i)=	0.0773 cm/cm	(Field Measurement)
•		_ :
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Source width perpendicular to GW	50 ft = 1524 cm	(Field Measurement)
flow direction in horizontal plane (Sw)=	30 It - 1324 CIII	(Field Measurement)
Source width perpendicular to GW	•	
flow direction in vertical plane (Sd)=	7 ft = 213.36 cm	
, and an estimate the second present (1)		
	` .	•
Calculated Parameters	DO NOT ENTER VALUES HERE!	
	[]	(October de Counties D44
Longitudinal dispersivit Ax=	9.11611271 cm	(Calculated, Equation R16
Transverse dispersivity Ay=	3.03870424 cm	(Calculated, Equation R17
Vertical dispersivity Az=	0.45580564 cm	(Calculated, Equation R18
Specific discharge U=	0.28112752 cm/day	(Calculated, Equation R19
Sw/(4*SQRT(Ay*X)) B=	22.8915878	
Sd/(2*SQRT(Az*X)) C=	16.5496312	
Error function erf(B)=	1 To determine error function v	alues,
Error function erf(C)=	1 see F46 & K46 in the linear in	nterpolation section.
		F-10 540004
Actual B value=	22.8915878 Actual C value=	16.549631
A () It calculations (Astrol out/D)	1 Actual erf(C)=	1
Automatic calculations : Actual erf(B)	1 Actual erf(C)=	<u></u>

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison	
	SB107 (6-8'), Benzene	
LUST Incident No:	20050027	
Soil Contamination Concentration (SSL)	1.470	
Concentration at the source (Cs)=	0:213 g/cm^3 or mg/L	(Field Measurement)
Concentration at a distance X (Cx)=	0.005 g/cm^3 or mg/L Tier 1	RO for Class I GW: 1885 0:005
, ,		
Distance along centerline of the		
plume coming from the source (X)=	33.81 ft = 1030.5 cm	(Projected Plume Distance
		(T. bl. F. Annandia C)
First order degradation constant (lambda)=	1/day	(Table E, Appendix C)
A self of the description of the Alexander	1:81E-05 cm/sec = 1.5638 cm/d	lay (Field Measurement)
Aquifer hydraulic conductivity (K)=	CIT/Sec = 1.5050 CIT/Sec	ay (Floid Wededi official)
the during an align to the	0:0500 cm/cm	(Field Measurement)
Hydraulic gradient (i)=	CHINCHI	(1.012.11.04.21.011.01.7)
Total soil porosity (theta T)≃	0:43 cm^3/cm^3	(Default)
Total 3011 porosity (tricta 17	是一种的一种的一种的一种的一种的一种的一种的一种的一种的一种的一种的一种的一种的一	, ,
Source width perpendicular to GW		•
flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW		•
flow direction in vertical plane (Sd)=	ft = 213.36 cm	
	OO NOT ENTED VALUES HEDE!	
Calculated Parameters	DO NOT ENTER VALUES HERE!	
) and the stimulation and idea Ave	103.046541 cm	(Calculated, Equation R16
Longitudinal dispersivity Ax=	34.3488469 cm	(Calculated, Equation R17
Transverse dispersivity Ay=	5.15232703 cm	(Calculated, Equation R18
Vertical dispersivity Az=	[(Calculated, Equation R19
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation 1776
Sw/(4*SQRT(Ay*X)) B=	2.02512664	·
Sd/(2*SQRT(Az*X)) C=	1.46407926	- continue
Error function erf(B)=	0.99581608 To determine error function	
Error function $\operatorname{erf}(C)$ =	0.96159653 see F46 & K46 in the linear	r interpolation section.
A . I D . alva-	2.02512664 Actual C valu	ie= 1.4640793
Actual B value≈	2.02512664 Actual C valu	1,4040/93
Automatic calculations : Actual erf(B)	0.99581608 Actual erf(C)	= 0.9615965
Automatic calculations . Actual en(D)	Aloua on(o)	3.5510000

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB107 (12-14'), Benzene	· · · · · · · · · · · · · · · · · · ·
LUST Incident No:	20050027	
Soil Contamination Concentration (SSL)	1.450	
Concentration at the source (Cs)=	0.210 g/cm^3 or mg/L	(Field Measurement)
consolitation at the dedices (ee)	With the second	·
Concentration at a distance X (Cx)=	0.005 g/cm ³ or mg/L Tier 1 RO f	or Class I GW : 300005
()	-	•
Distance along centerline of the		•
plume coming from the source (X)=	32.87 ft = 1001.8 cm	(Projected Plume Distance
First order degradation constant (lambda)=	010009 1/day	(Table E, Appendix C)
A 16 L L P death the MA	181E-05 cm/sec = 1.5638 cm/day	(Field Measurement)
Aquifer hydraulic conductivity (K)=	1.3036 CHI/day	(Field Measurement)
I bedeevelle overdiget (i)	0:0500 cm/cm	(Field Measurement)
Hydraulic gradient (i)=	O:0300 CIII/CIII	(Ficial Measure Menty
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Total son porosity (thotal 1)		(=
Source width perpendicular to GW		
flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW		•
flow direction in vertical plane (Sd)=	7 ft = 213.36 cm	
	DO NOT ENTED VALUES HERE!	
Calculated Parameters	DO NOT ENTER VALUES HERE!	
Longitudinal dispersivity Ax=	100.182973 cm	(Calculated, Equation R16
Transverse dispersivity Ay=	33.3943245 cm	(Calculated, Equation R17
,	5.00914867 cm	(Calculated, Equation R18
Vertical dispersivity Az=		(Calculated, Equation R19
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R19
Sw/(4*SQRT(Ay*X)) B=	2.08301159	
Sd/(2*SQRT(Az*X)) C=	1.50592758	
Error function erf(B)=	0.9967789 To determine error function values,	
Error function erf(C)=	0.96680399 see F46 & K46 in the linear interpolation section.	
	0.0004450	4 5050070
Actual B value=	2.08301159 Actual C value=	1.5059276
	0.0067780	0.0880.04
Automatic calculations : Actual erf(B)	0.9967789 Actual erf(C)≈	0.966804

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
•	427 West Madison, Oak Park, Illinois	
	SB107 (12-14'), MTBE	
LUST Incident No:	20050027	
Soil Contamination Concentration (SSL)		
Concentration at the source (Cs)=	0.25 g/cm^3 or mg/L	(Field Measurement)
Constitution at the course (44)		
Concentration at a distance X (Cx)=	0.07 g/cm^3 or mg/L Tier 1	RO for Class I GW : 0.07
Distance along centerline of the		(D. J. J. I.Bl. a. Distance
plume coming from the source (X)=	109.93 ft = 3350.7 cm	(Projected Plume Distance

First order degradation constant (lambda)=	0,0000 1/day	
A suite - budge die conductivity (K)-	1.81E-05 cm/sec = 1.56384 cm	/day (Field Measurement)
Aquifer hydraulic conductivity (K)=	ite it is a first of the second of the	(industrial industria
Undraulia gradient (i)=	0.0770 cm/cm	(Field Measurement)
Hydraulic gradient (i)=		
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Total doll percenty (theta 1)		
Source width perpendicular to GW		
flow direction in horizontal plane (Sw)=	50.00 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW		•
flow direction in vertical plane (Sd)=	6.56 ft = 199.998 cm	1
O. L. Maria Davis mantana	DO NOT ENTER VALUES HERE!	
Calculated Parameters	DO NOT ENTEN TRADEO HENE.	
Longitudinal dispersivit Ax=	335.066784 cm	(Calculated, Equation R16
Transverse dispersivity Ay=	111.688928 cm	(Calculated, Equation R17
e de la companya de	16.7533392 cm	(Calculated, Equation R18
7 0, 4, 0, 0, 1	0.28003647 cm/day	(Calculated, Equation R19
Openite are areas	0.62280806	(Outomatou) Equation (C)
Sw/(4*SQRT(Ay*X)) B=		
Sd/(2*SQRT(Az*X)) C=	0.42206403	an valuas
Error function erf(B)=	0.62156512 To determine error function	
Error function erf(C)=	0.44941838 see F46 & K46 in the linea	ar interpolation section.
	0.62280806 Actual C val	ue= 0.422064
Actual B value=	0.62280806 Actual C val	0.422004
Automotic colculations: Actual erf(R)	0.62156512 Actual erf(C	0.4494184
Automatic calculations : Actual erf(B)	7.000 TZ	,

DOMENICO SOLUTE TRANSPORT MODEL CALCULATION FOR BENZENE

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB108 (6-8'), Benzene 20050027	
LUST Incident No:	20030027	
Soil Contamination Concentration (SSL)	11.200	
Concentration at the source (Cs)=	1.620 g/cm^3 or mg/L	(Field Measurement)
•		
Concentration at a distance X (Cx)=	0.005 g/cm ³ or mg/L Tier 1 RC	for Class I GW :
Distance along centerline of the		(Designated Pluma Dictance
plume coming from the source (X)=	55 66 ft = 1696.4 cm	(Projected Plume Distance
	**************************************	(Table E, Appendix C)
First order degradation constant (lambda)=	// 0,0009 1/day	(Table L, Appendix O)
Aguifer hydraulic conductivity (K)=	1.81E-05 cm/sec = 1.5638 cm/day	(Field Measurement)
Addres flydraulic conductivity (17)	Beside Bill State Symmetry Library Section 1	,
Hydraulic gradient (i)=	0:0500 cm/cm	(Field Measurement)
Trydraulo gradion (i)	Supplies the supplies the supplies of the supp	
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
, , , , , , , , , , , , , , , , , , ,		
Source width perpendicular to GW		
flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW	7 ft = 213.36 cm	
flow direction in vertical plane (Sd)≃	7 ft = 213.36 cm	
Calculated Parameters	DO NOT ENTER VALUES HERE!	·
Calculated I didinotelo		
Longitudinal dispersivity Ax=	169.640451 cm	(Calculated, Equation R16
Transverse dispersivity Ay=	56.5468171 cm	(Calculated, Equation R17
Vertical dispersivity Az=	8.48202256 cm	(Calculated, Equation R18
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R19
Sw/(4*SQRT(Ay*X)) B=	1.23014466	
Sd/(2*SQRT(Az*X)) C=	0.88934156	
Error function erf(B)=	0.91808613 To determine error function va	ilues,
Error function erf(C)=	0.79150642 see F46 & K46 in the linear int	
End fallotion on(o)		•
Actual B value≃	1.23014466 Actual C value=	0,8893416
Automatic calculations : Actual erf(B)	0.91808613 Actual erf(C)=	0.7915064
	· ·	

DOMENICO SOLUTE TRANSPORT MODEL CALCULATION FOR BENZENE

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB108 (12-14'), Benzene	
LUST Incident No:	20050027	
Soil Contamination Concentration (SSL)	0.206	
Concentration at the source (Cs)=	1.400 g/cm^3 or mg/L	(Field Measurement)
Concentration at the source (Cs)-	Bernard Brown Co 9	
Concentration at a distance X (Cx)=	g/cm^3 or mg/L Tier 1 RO	for Class I GW : 0.005
Distance along centerline of the	•	
plume coming from the source (X)=	55:24 ft = 1683.8 cm	(Projected Plume Distance
plante confing from the coarse (74)	A 19 th a 18 th the ship of the Control of the ship of	` -
First order degradation constant (lambda)=	0.0009 1/day	(Table E, Appendix C)
	1.5638 cm/day	(Field Measurement)
Aquifer hydraulic conductivity (K)=	cm/sec - 1.3036 cm/day	(i leid Medadrellicity)
Hydraulic gradient (i)=	0:0500 cm/cm	(Field Measurement)
Trydradile gradient (i)	Signification of the control of the	,
Total soil porosity (theta T)=	0.43 cm^3/cm^3	(Default)
Source width perpendicular to GW	4504	(Field Measurement)
flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW		
flow direction in vertical plane (Sd)=	7 ft = 213.36 cm	
now direction in vertical plane (Gd)	Object statement of processing the	
		•
Calculated Parameters	DO NOT ENTER VALUES HERE!	
	100 0000 47	(O-levelete d. Equation D46
Longitudinal dispersivity Ax=	168.382017 cm	(Calculated, Equation R16
Transverse dispersivity Ay=	56.1273391 cm	(Calculated, Equation R17
Vertical dispersivity Az=	8.41910086 cm	(Calculated, Equation R18
Specific discharge U=	0.18184186 cm/day	(Calculated, Equation R19
Sw/(4*SQRT(Ay*X)) B=	1.23933837	
Sd/(2*SQRT(Az*X)) C=	0.89598821	
Error function erf(B)=	0.9203447 To determine error function val	ues,
Error function erf(C)=	0.79488701 see F46 & K46 in the linear inte	
		0.0050000
Actual B value=	1.23933837 Actual C value=	0.8959882
Automatic calculations : Actual erf(B)	0.9203447 Actual erf(C)=	0.794887
(1010)))(a)		

DOMENICO SOLUTE TRANSPORT MODEL CALCULATION FOR ETHYLBENZENE

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	
	SB108(6-8'), Ethylbenzene	
LUST Incident No:	20050027	
Concentration at the source (Cs)=	g/cm^3 or mg/L (Calculated from	om S(Field Measurement)
Concentration at a distance X (Cx)=	g/cm^3 or mg/L Tier 1 RC	O for Class I GW : 0.7
Distance along centerline of the	_	
plume coming from the source (X)=	3.40 ft = 103.62 cm	(Projected Plume Distanc
į,		
First order degradation constant (lambda)=	₩ 0 0030 1/day	(Table E, Appendix C)
	84E-05 cm/sec = 1.5638 cm/day	y (Field Measurement)
Aquifer hydraulic conductivity (K)=	81E-05 cm/sec = 1.5638 cm/day	(Field Measureinerit)
Hydraulic gradient (i)=	0.0500 cm/cm	(Field Measurement)
Total soil porosity (theta T)=	0:43 cm^3/cm^3	(Default)
Source width perpendicular to GW		
flow direction in horizontal plane (Sw)=	50 ft = 1524 cm	(Field Measurement)
Source width perpendicular to GW	Salandaria Companya (Companya Companya	
flow direction in vertical plane (Sd)=	7_{i} ft = 213.36 cm	
Calculated Parameters	DO NOT ENTER VALUES HERE!	
Longitudinal dispersivity Ax=	10.362077 cm	(Calculated, Equation R1
Transverse dispersivity Ay=	3.4540258 cm	(Calculated, Equation R1
Vertical dispersivity Az=	0.5181039 cm	(Calculated, Equation R
Specific discharge U=	0.1818419 cm/day	(Calculated, Equation R
Sw/(4*SQRT(Ay*X)) B=	20.13904	
Sd/(2*SQRT(Az*X)) C=	14.559658	,
Error function erf(B)=	1 To determine error function v	
Error function erf(C)=	1 see F46 & K46 in the linear in	nterpolation section.
Actual B value=	20.13904 Actual C value=	= 14.55965
Automatic calculations: Actual erf(B)	1 Actual erf(C)=	
Automatic calculations . Actual on (D)	, , , , , , , , , , , , , , , , , , , ,	

DOMENICO SOLUTE TRANSPORT MODEL CALCULATION FOR MTBE

Clark 427 West Madison, Oak Park, Illinois SB108(6-8'), MTBE 20050027	
427 West Madison, Oak Park, Illinois SB108(6-8'), MTBE	
427 West Madison, Oak Park, Illinois SB108(6-8'), MTBE	
SB108(6-8'), MTBE	
20050027	
	<u></u>
0.41 g/cm^3 or mg/L	(Field Measurement)
0:07 g/cm^3 or mg/L Tier 1 RC	O for Class I GW : 0:07
4460.21 cm	(Projected Plume Distanc
146.33 π – 4400.2 cm	(Frojected Fidine Distance
0.0000 1/day	(Table E, Appendix C)
1.81E-05 cm/sec = 1.56384 cm/day	y (Field Measurement)
0.0500 cm/cm	(Field Measurement)
0.43 cm^3/cm^3	(Default)
50.00 ft = 1524 cm	(Field Measurement)
6.56 ft = 199.998 cm	
DO NOT ENTER VALUES HERE!	
446.023419 cm 148.674473 cm 22.301171 cm 0.18184186 cm/day 0.46787295 0.31706774 0.49181885 To determine error function value of the linear in	
0.46787295 Actual C value=	0.317067
0.49181885 Actual erf(C)=	0.346136
	146.33 ft = 4460.2 cm 146.33 ft = 4460.2 cm 0.00000 1/day 181E-05 cm/sec = 1.56384 cm/day 0.0500 cm/cm 0.43 cm^3/cm^3 50.00 ft = 1524 cm 446.023419 cm 148.674473 cm 22.301171 cm 0.18184186 cm/day 0.46787295 0.31706774 0.49181885 To determine error function version and the linear in the li

DOMENICO SOLUTE TRANSPORT MODEL CALCULATION FOR BENZENE

Exposure Pathway:	Groundwater Ingestion	
Receptor:	Residential	<u></u>
Site Location:	Clark	
	427 West Madison, Oak Park, Illinois	3
	MW3, Benzene	
LUST Incident No:	20050027	
Concentration at the source (Cs)=	0.901 g/cm^3 or mg/L	(Field Measurement)
Concentration at a distance X (Cx)=	0.085 g/cm^3 or mg/L	Tier 1 RO for Class I GW : 0.005
Distance along centerline of the	2058	.9 cm (Projected Plume Distance
plume coming from the source (X)=	67.55 ft = 2058	.9 cm (Fibjected Flume Distance
First order degradation constant (lambda)=	0.0009 1/day	(Table E, Appendix C)
Aquifer hydraulic conductivity (K)=	1:81E-05 cm/sec = 1.563	38 cm/day (Field Measurement)
Hydraulic gradient (i)=	0.0770 cm/cm	(Field Measurement)
Total soil porosity (theta T)=	0:43 cm^3/cm^3	(Default)
Source width perpendicular to GW flow direction in horizontal plane (Sw)=	50 ft = 15	24 cm (Field Measurement)
Source width perpendicular to GW flow direction in vertical plane (Sd)=	7 ft = 2	00 cm
Calculated Parameters	DO NOT ENTER VALUES HERE	E!
Longitudinal dispersivity Ax= Transverse dispersivity Ay= Vertical dispersivity Az= Specific discharge U= Sw/(4*SQRT(Ay*X)) B= Sd/(2*SQRT(Az*X)) C= Error function erf(B)= Error function erf(C)=	205.891034 cm 68.6303446 cm 10.2945517 cm 0.28003647 cm/day 1.01355698 0.68687477 0.84825236 To determine error to the control of the c	
Actual B value=	1.01355698 Actua	C value= 0.6868748
Automatic calculations : Actual erf(B)	0.84825236 Actua	I erf(C)= 0.6686447

BUDGET AND BILLING INFORMATION

OSFM ELIGIBILITY AND DEDUCTIBLE DETERMINATION LETTER

Office of the Illinois State Fire Marshal

Lindy/Bob/Anthony/ Anne/Anna

General Office 217-785-0969

FAX 217-782-1062

Divisions ARSON INVESTIGATION

217-782-9116

BOILER and PRESSURE

VESSEL SAFETY 217-782-2696

FIRE PREVENTION

217-785-4714

217-782-9889 INFIRS

217-785-5826 HUMAN RESOURCES

217-785-1026

PERSONNEL STANDARDS and EDUCATION

217-782-4542

PETROLEUM and -CHEMICAL SAFETY

217-785-5878

PUBLIC INFORMATION 217-785-1021

WES SITE www.state.ii.uslosim CERTIFIED MAIL - RECEIPT REQUESTED #7003 3110 0004 1282 0169

James Chakkalapadavil MANAGEMENT SERVICES 772 North Adele Elmhurst, IL 60126

March 14, 2005

In Re:

Facility No. 2-010024 IEMA Incident No. 05-0027 Clark 427 W. Madison Street Oak Park, Cook Co., IL

Dear Applicant:

The Reimbursement Eligibility and Deductible Application received on February 17, 2005 for the above referenced occurrence has been reviewed. The following determinations have been made based upon this review.

It has been determined that you are eligible to seek payment of costs in excess of \$10,000. The costs must be in response to the occurrence referenced above and associated with the following tanks:

Eligible Tanks

Tank 3 12,000 gallon Gasoline Tank 4 12,000 gallon Gasoline

You must contact the Illinois Environmental Protection Agency to receive a packet of Agency billing forms for submitting your request for payment.

An owner or operator is eligible to access the Underground Storage Tank Fund if the eligibility requirements are satisfied:

- Neither the owner nor the operator is the United States Government, I.
- The tank does not contain fuel which is exempt from the Motor Fuel Tax Law, 2.
- 3. The costs were incurred as a result of a confirmed release of any of the following substances:

"Fuel", as defined in Section 1.19 of the Motor Fuel Tax Law

Aviation fuel

Heating oil

Kerosene

Used oil, which has been refined from crude oil used in a motor vehicle, as defined in Section 1.3 of the Motor Fuel Tax Law.

- 4. The owner or operator registered the tank and paid all fees in accordance with the statutory and regulatory requirements of the Gasoline Storage Act.
- 5. The owner or operator notified the Illinois Emergency Management Agency of a confirmed release, the costs were incurred after the notification and the costs were a result of a release of a substance listed in this Section. Costs of corrective action or indemnification incurred before providing that notification shall not be eligible for payment.
- 6. The costs have not already been paid to the owner or operator under a private insurance policy, other written agreement, or court order.
- 7. The costs were associated with "corrective action".

This constitutes the final decision as it relates to your eligibility and deductibility. We reserve the right to change the deductible determination should additional information that would change the determination become available. An underground storage tank owner or operator may appeal the decision to the Illinois Pollution Control Board (Board), pursuant to Section 57.9 (c) (2). An owner or operator who seeks to appeal the decision shall file a petition for a hearing before the Board within 35 days of the date of mailing of the final decision, (35 Illinois Administrative Code 105.102(a) (2)).

For information regarding the filing of an appeal, please contact:

Dorothy Gunn, Clerk Illinois Pollution Control Board State of Illinois Center 100 West Randolph, Suite 11-500 Chicago, Illinois 60601 (312) 814-3620

The following tanks are also listed for this site:

Tank 1 6,000 gallon Gasoline Tank 2 6,000 gallon Gasoline

Your application indicates that there has not been a release from these tanks under this incident number. You may be eligible to seek payment of corrective action costs associated with these tanks if it is determined that there has been a release from one or more of these tanks. Once it is determined that there has been a release from one or more of these tanks you may submit a separate application for an eligibility determination to seek corrective action costs associated with this/these tanks.

If you have any questions, please contact our Office at (217) 785-1020 or (217) 785-5878.

Sincerely,

Deanne Lock

Administrative Assistant

Division of Petroleum and Chemical Safety

CC:

IEPA

Facility File

OWNER/OPERATOR BUDGET CERTIFICATION FORM

Illinois Environmental Protection Agency

Owner/Operator and Professional Engineer Budget Certification Form for Leaking Underground Storage Tank Sites

In accordance with 415 ILCS 5/57, if an owner or operator intends to seek payment from the UST Fund, an owner or operator must submit to the Agency, for the Agency's approval or modification, a budget which includes an accounting of all costs associated with the implementation of the investigative, monitoring and/or corrective action plans.

I hereby certify that I intend to seek payment from the UST Fund for performing Correcti activities at 427 W. Madison, Oak Park LUST	site. I
further certify that the costs set forth in this budget are necessary activities and are reasonable the best of my knowledge and belief. I also certify that the costs included in this budget a action in excess of the minimum requirements of 415 ILCS 5/57 and no costs are included which are not described in the corrective action plan. I further certify that costs ineligible the Fund pursuant to 35 Illinois Administrative Code Section 732.606 are not included in or amendment. Such ineligible costs include but are not limited to:	re not for corrective d in this budget for payment from
Costs associated with ineligible tanks.	RECEIVED
Costs associated with site restoration (e.g., pump islands, canopies). Costs associated with utility replacement (e.g., sewers, electrical, telephone, etc.). Costs incurred prior to IEMA notification.	DEC 2-8 2006
Costs associated with planned tank pulls. Legal defense costs.	IEPA/BOL
Costs incurred prior to July 28, 1989. Costs associated with installation of new USTs or the repair of existing USTs.	
Owner/Operator: James Chakkalapadavil Title: Owner/Operator	·
Signature: Date: 1//2	1/06
Subscribed and sworn to before me the day of	2006
(Budget Proposals and Budget Amendments must be notarized when the FETT FORTION SINCES ANNE J. KEDON ANNE J. KEDON NOTARY PUBLIC-STATE OF ILLIN (Notary Public) P.E.: Anthony Negri Seal: 062-08	IOIS TO THE SAMOO
P.E. Signature: Date Date Date	23 30 Million
Subscribed and sworn to before me the day of (Budget Proposals and Budget Amendments must be notarized when the certification is signed.) Seal OFFICIAL SE ANNE J. KILD NOTARY PUBLIC-STATE The Agency is authorized to require this information under 415 ILCS ANNESSION FEXPL information is required. Failure to do so may result in the delay or denial of any budget or payment requested hereunder. This form has been approved by the Forms Management Center.	AL AY OF ILLINOIS RES 7/15/10

IL 532 2264 LPC 495 Rev. March 2000 jk\BUDCERT.WPD

BUDGET AND BILLING FORM

General Information for the Budget and Billing Forms

LPC#: 03	12255050	County: Cook		
	(Park			
	107 M. 184 K.			
	dent No.: 20050027			
	fication Date: 01/07/05			
	rm was prepared: 10/09/06			
This form	is being submitted as a (check o	one):		
\square	Budget Proposal			
	Budget Amendment (Budget an	nendments must include only t	he costs over th	ne previous budget.)
	Billing Package			
	Please provide the name(s) and	date(s) of report(s) documenting	ng the costs rec	quested:
	Name(s):			
	Date(s):		<u> </u>	·
This packa	nge is being submitted for the si	ite activities indicated below	(check one):	
35 Ill. Adn	a. Code 734:			
	Early Action			
	Free Product Removal after Ear	rly Action		
	Site Investigation:	Stage 1: Stage 2 S	Stage 3:	
\square	Corrective Action			
35 Ill. Adn	n. Code 732:			RECEIVED
	Early Action			DEC 2-8 2006
	Free Product Removal after Ea	rly Action		IEPA/BOL
	Site Classification			, , , , , , , , , , , , , , , , , , ,
	Low Priority Corrective Action	1		
	High Priority Corrective Action	n		
35 Ill. Adr	m. Code 731:			
	Site Investigation			
	Corrective Action			

General Information for the Budget and Billing Forms

If eligible for reimbursement, where should reimbursement checks be sent? Please note that only owners or operators of USTs may be eligible for reimbursement. Therefore, payment can only be made to an owner or operator. The Illinois EPA is not required to and will not recognize an assignment or other delegation of payment as justification for issuing payment to anyone other than the owner or operator. The following address will be used as the mailing address for reimbursement checks and any final determination letters regarding reimbursement.

Pay to the order of:James of	Chakkalapadavil	<u></u> .		
Send in care of: Environmen	ntal Protection Indus	tries		
Address: 16650 South Can	al Street			
City: South Holland		State: _		Zip: 60473
The payee is the: Own	er 🗸 Operato	r 🗌 ((Check one or both.)	
Signature of the owne	r or operator of the U	JST(s) (required)		eve a change of address, to print off a W-9 Form.
Number of petroleum USTs in or joint stock company of the company of the owner or oper	owner or operator; and	ned or operated by d any company ow	the owner or operato ned by any parent, so	or; any subsidiary, parent ubsidiary or joint stock
Fewer than 101: 🗸	101 or more: [_		RECEIVED
Number of incidents reported Incident Numbers assigned to Please list all tanks that have	the site due to release	s from USTs: 90	1088	iEPA/BOL 20050027 ed at the site.
Product Stored in UST	Size (gallons)	Did UST have a release?	Incident No.	Type of Release Tank Leak / Overfill / Piping Leak
Gasoline	12,000	Yes 🕢 No 🗌	20050027	Tank Leak
Gasoline	12,000	Yes No No Yes No	20050027	Tank Leak
		Yes No Yes No		
		Yes No Yes No		
		Yes No		
		Yes No Yes No		
ł	1 1	Yes 🗌 No 🔲	1	i

Proposed Budget Summary and Budget Total

BUDGET SUMMARY PAGE

List the total dollar amount from each of the forms listed below as applicable. The total proposed budget will be automatically calculated.

1.	Drilling and Monitoring Well Costs Form:	\$
2.	Analytical Costs Form:	\$
3.	Remediation and Disposal Costs Form:	\$
4.	UST Removal and Abandonment Costs Form:	\$
5.	Paving, Demolition, and Well Abandonment Costs Form:	\$
6.	Consulting Fees Form:	§ 14,400.00
7.	Handling Charges Form: Handling charges will be determined line in EPA. The amount of allowable handling charges will Charges Form.	ed at the time a billing package is submitted to the label be determined in accordance with the Handling
Tot	al Proposed Budget (less handling charges):	§ 14,400.00

Consulting Fees Form

Consulting Personnel Time Costs:

Employee N	Vame	Personnel Title*	Hours	Rate*	Total \$
Remediation Category		Task			
Anthony Negri		Professional Engineer	8.00	\$130.00	\$1,040.00
CCAP-BUDGET	Review CAP, Budge	t Certification			
Cindy Panagiotopoulos		Project Manager	50.00	\$90.00	\$4,500.00
CCAP	Preparation of CAP	and Budget Report			
Cindy Panagiotopoulos		Engineer II	10.00	\$85.00	\$850.00
CCAP	Modeling Calculation	ns	· · · · · · · · · · · · · · · · · · ·		
Cindy Panagiotopoulos		CAD II	8.00	\$45.00	\$360.00
CCAP	Maps Preparation			<u>,</u>	· · · · · · · · · · · · · · · · · · ·
Zuzana Jurcik		Administrative	2.00	\$35,00	\$70.00
CCAP-BUDGET	Copying/Binding of C	CAP/Budget		<u></u>	
Cindy Panagiotopoulos		Project Manager	50.00	\$90.00	\$4,500.00
CACR	Preparation of Corre	ective Action Completion Rep	ort		
Anthony Negri		Professional Engineer	8.00	\$130.00	\$1,040.00
CACR	Review and Certify	the Corrective Action Comple	tion Report		
Cindy Panagiotopoulos		CAD II	4.00	\$45.00	\$180.00
CACR	Preparation of Corre	ective Action Completion Rep	ort Drawings		

Thes from the Personnel Tes and Equrements document must be used.

Total Consulting Personnel Time Costs: \$ \$12,540.00

Consulting Fees Form

Consulting Personnel Time Costs:

Rate* Tota	tal \$
\$85.00 \$1,36	60.00
\$35.00 \$70.0	00
	
\$90.00 \$360.	0.00
<u></u>	
\$35.00 \$70.0	.00
\$0.00	00
	
\$0.00	00
\$0.00	00
\$0.0	00

Total Consulting Personnel Time Costs: \$

\$1,860.00