

Illinois Environmental Protection Agency

Bureau of Land • 1021 N. Grand Avenue E. • P.O. Box 19276 • Springfield • Illinois • 62794-9276

HIGHWAY AUTHORITY AGREEMENT

This Agreement is entered into this _	day of	, 20 pursuant to 35 Ill. Adm.
Code 742.1020 by and between (1) Howa	rd M. Munyon ("Property Owner	") [or in the case of a petroleum
underground storage tank (UST), the owner/op	erator of the tank ("Owner/Operato	r'')] and (2) the Village of Oak Park.
Illinois ("Highway Authority"), collectively l	known as the "Parties."	

[Use this paragraph for sites with petroleum leaking underground storage tank(s)] WHEREAS, <u>Howard M. Munyon</u> is beneficiary of a land trust, the Howard M. Munyon Revocable Living Trust, that is the title owner or operator of one or more leaking underground storage tanks presently or formerly located at <u>6801</u> West North Avenue, Oak Park, Illinois 60302 ("the Site");

WHEREAS, as a result of one or more releases of contaminants from the above referenced USTs ("the Release(s)"), soil and/or groundwater contamination at the Site exceeds Tier 1 residential remediation objectives of 35 Ill. Adm. Code 742;

WHEREAS, the soil and/or groundwater contamination exceeding Tier 1 residential remediation objectives extends or may extend into the Highway Authority's right-of-way;

WHEREAS, the Owner/Operator is conducting corrective action in response to the Release(s);

WHEREAS, the Parties desire to prevent groundwater beneath the Highway Authority's right-of-way that exceeds Tier 1 remediation objectives from use as a supply of potable or domestic water and to limit access to soil within the right-of-way that exceeds Tier 1 residential remediation objectives so that human health and the environment are protected during and after any access;

NOW, THEREFORE, the Parties agree as follows:

- 1. The recitals set forth above are incorporated by reference as if fully set forth herein.
- 2. [Use this paragraph if IEMA has issued an incident number] The Illinois Emergency Management Agency has assigned incident number(s) 891696 and 972342 to the Release(s).
- 3. Attached as Exhibit A is a scaled map(s) prepared by the <u>Owner/Operator</u> that shows the Site and surrounding area and delineates the current and estimated future extent of soil and groundwater contamination above the applicable Tier 1 residential remediation objectives as a result of the Release(s). [Use the following sentence if either soil or groundwater is not contaminated above applicable Tier 1 residential remediation objectives: ________ is not contaminated above the applicable Tier 1 residential remediation objectives.]
- 4. Attached as Exhibit B is a table(s) prepared by the <u>Owner/Operator</u> that lists each contaminant of concern that exceeds its Tier 1 residential remediation objective, its Tier 1 residential remediation objective and its concentrations within the zone where Tier 1 residential remediation objectives are exceeded. The locations of the concentrations listed in Exhibit B are identified on the map(s) in Exhibit A.
- 5. Attached as Exhibit C is a scaled map prepared by the <u>Owner/Operator</u> showing the area of the Highway Authority's right-of-way that is governed by this agreement ("Right-of-Way"). Because Exhibit C is not a surveyed plat, the Right-of-Way boundary may be an approximation of the actual Right-of-Way lines.

- 6. [Use this paragraph if samples have not been collected within the Right-of-Way, sampling within the Right-of-Way is not practical, and contamination does not extend beyond the Right-of-Way.] Because the collection of samples within the Right-of-Way is not practical, the Parties stipulate that, based on modeling, soil and groundwater contamination exceeding Tier 1 residential remediation objectives does not and will not extend beyond the boundaries of the Right-of-Way.
- 7. The Highway Authority stipulates it has jurisdiction over the Right-of-Way that gives it sole control over the use of the groundwater and access to the soil located within or beneath the Right-of-Way.
- 8. The Highway Authority agrees to prohibit within the Right-of-Way all potable and domestic uses of groundwater exceeding Tier 1 residential remediation objectives.
- 9. The Highway Authority further agrees to limit access by itself and others to soil within the Right-of-Way exceeding Tier 1 residential remediation objectives. Access shall be allowed only if human health (including worker safety) and the environment are protected during and after any access. The Highway Authority may construct, reconstruct, improve, repair, maintain and operate a highway upon the Right-of-Way, or allow others to do the same by permit. In addition, the Highway Authority and others using or working in the Right-of-Way under permit have the right to remove soil or groundwater from the Right-of-Way and dispose of the same in accordance with applicable environmental laws and regulations. The Highway Authority agrees to issue all permits for work in the Right-of-Way, and make all existing permits for work in the Right-of-Way, subject to the following or a substantially similar condition:

As a condition of this permit the permittee shall request the office issuing this permit to identify sites in the Right-of-Way where a Highway Authority Agreement governs access to soil that exceeds the Tier 1 residential remediation objectives of 35 Ill. Adm. Code 742. The permittee shall take all measures necessary to protect human health (including worker safety) and the environment during and after any access to such soil.

- 10. This agreement shall be referenced in the Agency's no further remediation determination issued for the Release(s).
- 11. The Agency shall be notified of any transfer of jurisdiction over the Right-of-Way at least 30 days prior to the date the transfer takes effect. This agreement shall be null and void upon the transfer unless the transferee agrees to be bound by this agreement as if the transferee were an original party to this agreement. The transferee's agreement to be bound by the terms of this agreement shall be memorialized at the time of transfer in a writing ("Rider") that references this Highway Authority Agreement and is signed by the Highway Authority, or subsequent transferor, and the transferee.
- 12. This agreement shall become effective on the date the Agency issues a no further remediation determination for the Release(s). It shall remain effective until the Right-of-Way is demonstrated to be suitable for unrestricted use and the Agency issues a new no further remediation determination to reflect there is no longer a need for this agreement, or until the agreement is otherwise terminated or voided.
- 13. In addition to any other remedies that may be available, the Agency may bring suit to enforce the terms of this agreement or may, in its sole discretion, declare this agreement null and void if any of the Parties or any transferee violates any term of this agreement. The Parties or transferee shall be notified in writing of any such declaration.
- 14. This agreement shall be null and void if a court of competent jurisdiction strikes down any part or provision of the agreement.
- 15. This agreement supercedes any prior written or oral agreements or understandings between the Parties on the subject matter addressed herein. It may be altered, modified or amended only upon the written consent and agreement of the Parties.

16. Any notices or other correspondence regarding this agreement shall be sent to the Parties at following addresses:

Manager, Division of Remediation Management Bureau of Land Illinois Environmental Protection Agency P.O. Box 19276 Springfield, IL 62974-9276

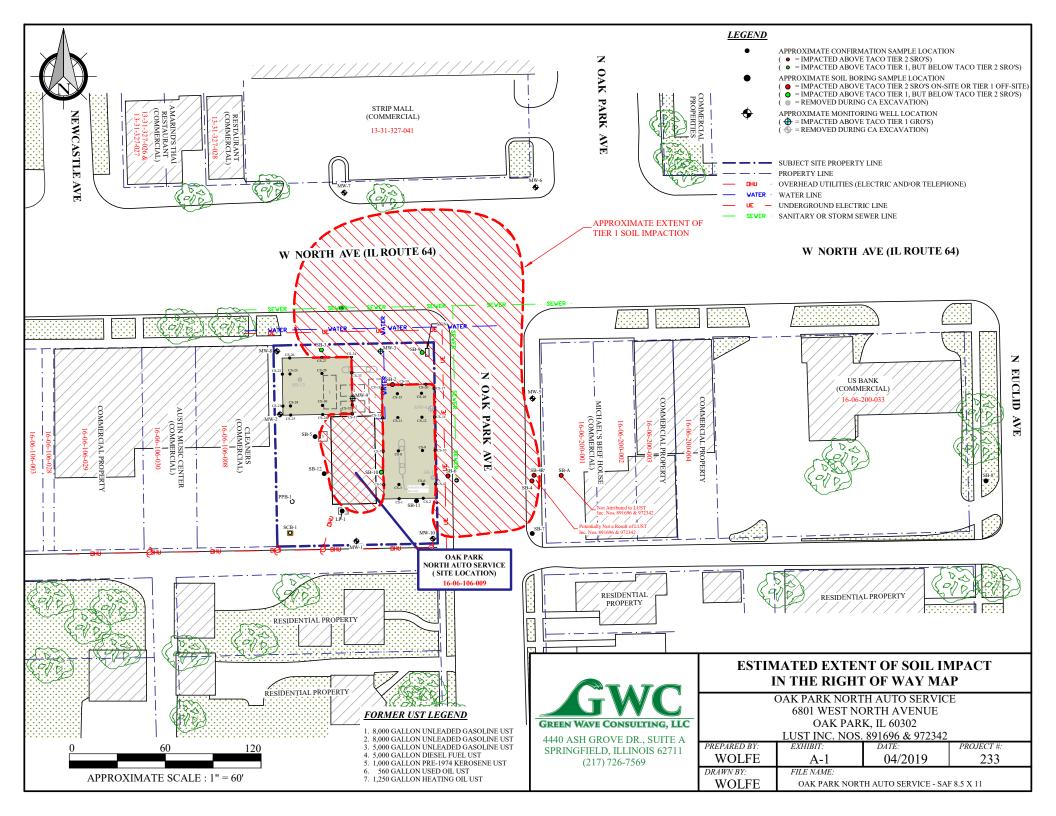
Village Manager, Village of Oak Park 123 Madison Street Oak Park, IL 60302

Date:____

Owner/Operator Howard Munyon, Trustee 6801 West North Avenue Oak Park, IL 60302

	VILLAGE OF OAK PARK	
Date:	By: Cara Pavlicek Its: Village Manager	
	OWNER/OPERATOR	

IN WITNESS WHEREOF, the Parties have caused this agreement to be signed by their duly authorized representatives.


By: Howard M. Munyon, Howard M. Munyon Revocable Living Trust

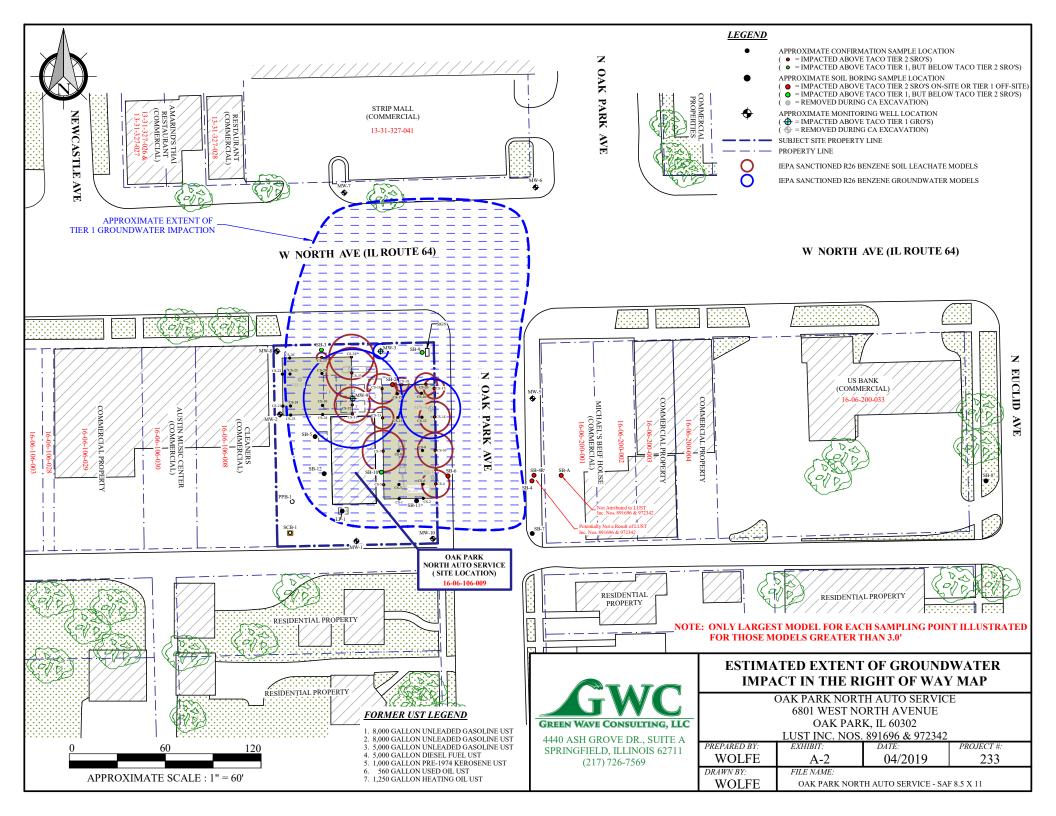

Its: Trustee

EXHIBIT A

VILLAGE OF OAK PARK HIGHWAY AUTHORITY AGREEMENT

Oak Park North Auto Service Howard Munyon Property 6801 West North Avenue Oak Park, Illinois

VILLAGE OF OAK PARK HIGHWAY AUTHORITY AGREEMENT

Oak Park North Auto Service Howard Munyon Property 6801 West North Avenue Oak Park, Illinois

	ample Collection ample Collection Sample Numb		7/13/2004 AM	7/13/2004	7/14/2004	7/14/2004		Soil Comp	. 0.1							
Environmental Laborator		n: AM	AM			7/14/2004	7/14/2004	Groundwat	er Ingestion Pathway		Ingestion Exposure Pathway	7	1	Inhalation Exposure Pathway	,	Metropolitan Statistical Area
	Sample Numb			AM	AM	AM	AM	Class I	Class II	lential	Industrial/ Commercial	onstruction Worker	lential	IndustriaV Commercial	Worker	Background Concentration
Ct		er: 31729	31730	31731	31732	31733	31734	Class I	Class II	Resid	Indu	Constr Wo	Resid	Indu	Constr Wo	
		•	•		•	•	•									
BTEX Organic Compounds (5035A/	8260B)															
Date Analyzed: Ur	its Rep. Limi	7/21/2004	7/21/2004	7/21/2004	7/21/2004	7/21/2004	7/21/2004									
Benzene µg	kg Varies**	<2.0	24.8	11,000	<2.0	664	6,190	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Toluene μg	kg Varies**	< 5.0	5.7	32,600	< 5.0	73.8	24,900	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Ethylbenzene μg	kg Varies**	< 5.0	< 5.0	22,000	< 5.0	10,700	17,600	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Total Xylenes μg	kg Varies**	< 5.0	6.3	77,000	< 5.0	32,100	62,600	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Polynuclear Aromatic Hydrocarbon	s (8270C)	•														
Date Analyzed: Ur	its Rep. Limi	7/20/2004	7/22/2004	7/20/2004	7/20/2004	7/20/2004	7/20/2004									
Acenaphthene µg	kg Varies**	< 50	< 50	< 50	< 50	117	56	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Acenaphthylene µg	kg Varies**	<50	<50	<50	<50	< 50	<50									70
Anthracene µg	kg Varies**	< 50	< 50	< 50	< 50	58	< 50	12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(a)anthracene µg	kg Varies**	<8.7	<8.7	12	<8.7	37	30	2,000	8,000	900*	8,000	170,000				1,800*
Benzo(a)pyrene µg	kg Varies**	<15	<15	<15	<15	31	19	8,000	82,000	90*	800*	17,000				2,100*
Benzo(b)fluoranthene μg	kg Varies**	<11	<11	<11	<11	30	18	5,000	25,000	900*	8,000	170,000				2,100*
Benzo(k)fluoranthene μg	kg Varies**	<11	<11	<11	<11	21	19	49,000	250,000	9,000	78,000	1,700,000				1,700
Benzo(ghi)perylene μg	kg Varies**	< 50	< 50	< 50	< 50	< 50	< 50			_		-				1,700
Chrysene µg	kg Varies**	< 50	< 50	< 50	< 50	56	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Dibenzo(a,h)anthracene μg	kg Varies**	<20	<20	<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
Fluoranthene µg	kg Varies**	< 50	< 50	50	< 50	105	115	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Fluorene µg	kg Varies**	< 50	< 50	52	< 50	222	94	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Indeno(1,2,3-cd)pyrene μg	kg Varies**	<29	<29	<29	<29	<29	<29	14,000	69,000	900*	8,000	170,000				1,600*
Naphthalene μg	kg Varies**	<25	<25	8,620	<25	10,400	5,700	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Phenanthrene µg	kg Varies**	< 50	< 50	121	< 50	304	190									2,500
Pyrene µg	kg Varies**	<50	<50	< 50	<50	123	97	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Metals (6010B)																
Date Analyzed: U1	its Rep. Limi	7/21/2004	7/21/2004	7/21/2004	7/21/2004	7/21/2004	7/21/2004		•	•	•	•	•	•	•	
Total Lead mg	/kg 0.2	9.5	8.6	19.4	10.2	24.6	11.6	107***	1,420***	400	800	700				36
TCLP Metals Method 1311 (6010B)																
	its Rep. Limi		7/21/2004	7/21/2004	7/21/2004	7/21/2004	7/21/2004									
TCLP Metals m	/L 0.002	< 0.002	< 0.002	0.002	< 0.002	0.008	0.003	0.0075	0.1							
Solids, Total (2540B)																
Date Analyzed: Un	its Rep. Limi															
Total Solids	6	78.42	82.27	79.04	81.13	81.48	81.70									

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

			SB-2 (12'-14')	SB-3 (4'-6')	SB-3 (12'-14')	LP-1	SB-4 (3'-5')	SB-4 (15-'16')				IEPA TA Soil Remediat	CO Tier 1 ion Objectives				
	Date of Samp	ple Collection:	7/14/2004	7/14/2004	7/14/2004	7/14/2004	8/8/2005	8/8/2005	Groundwa	onent of the ter Ingestion Pathway		Ingestion Exposure Pathway	7		Inhalation Exposure Pathway	y	Metropolitan Statistical Area
	Time of Sam	ple Collection:	AM	AM	AM	AM	7:45 AM	7:45 AM	Class I	Class II	lential	Industria <i>l</i> Commercial	onstruction Worker	lential	Industrial/ Commercial	Worker	Background Concentration
Environmental	Laboratory Sa	mple Number:	31735	31736	31737	31738	5-2396-001	5-2396-002		C.M.S.J 11	Resic	Indu	Const Wo	Resi	Indu	Const	
Contaminants of Concern:			•	•		•	•	•			,						,
BTEX Organic Compoun	ds (5035A/826	0B)															
Date Analyzed:	Units	Rep. Limit	7/21/2004	7/21/2004	7/21/2004	7/22/2004	8/12/2005	8/12/2005									
Benzene	μg/kg	Varies**	19.2	1,530	<2.0	< 5.0	194	<2.0	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Toluene	μg/kg	Varies**	37.4	5,290	< 5.0	< 5.0	<50.0	< 5.0	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Ethylbenzene	μg/kg	Varies**	31.4	12,200	< 5.0	< 5.0	4,770	< 5.0	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Total Xylenes	μg/kg		271	48,400	<5.0	< 5.0	1,750	<5.0	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Polynuclear Aromatic Hy	drocarbons (8	270C)		, , , , , , , , , , , , , , , , , , , ,	•			'						•			I .
Date Analyzed:	Units	Rep. Limit	7/20/2004	7/27/2004	7/27/2004	7/20/2004	8/11/2005	8/11/2005									
Acenaphthene	ug/kg	Varies**	<50	<50	<50	<50	<50	<50	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Acenaphthylene	ug/kg		<50	<50	<50	<50	<50	<50									70
Anthracene	μg/kg		<50	<50	<50	<50	<50	<50	12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(a)anthracene	μg/kg	Varies**	<8.7	30	<8.7	<8.7	<8.7	<8.7	2,000	8,000	900*	8,000	170,000				1.800*
Benzo(a)pyrene	μg/kg	Varies**	<15	26	<15	<15	<15	<15	8,000	82,000	90*	800*	17,000				2,100*
Benzo(b)fluoranthene	ug/kg		<11	23	<11	<11	<11	<11	5,000	25,000	900*	8,000	170,000				2,100*
Benzo(k)fluoranthene	μg/kg	Varies**	<11	22	<11	<11	<11	<11	49,000	250,000	9,000	78,000	1,700,000				1,700
Benzo(ghi)perylene	μg/kg	Varies**	<50	<50	<50	<50	<50	<50									1,700
Chrysene	μg/kg	Varies**	<50	<50	< 50	<50	<50	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Dibenzo(a,h)anthracene	μg/kg	Varies**	<20	<20	<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
Fluoranthene	μg/kg	Varies**	<50	68	< 50	<50	< 50	< 50	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Fluorene	μg/kg	Varies**	<50	100	<50	<50	<50	<50	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29	<29	<29	<29	<29	<29	14,000	69,000	900*	8,000	170,000				1,600*
Naphthalene	μg/kg	Varies**	121	5,400	35	<25	941	<25	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Phenanthrene	μg/kg	Varies**	< 50	153	< 50	< 50	< 50	< 50									2,500
Pyrene	μg/kg	Varies**	< 50	82	< 50	< 50	< 50	< 50	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Metals (6010B)		•	•	•			•				· · · · ·						·
Date Analyzed:	Units	Rep. Limit	7/21/2004	7/21/2004	7/21/2004		8/13/2005	8/13/2005									
Total Lead	mg/kg	0.2	17.6	15.0	17.9		13.4	15.8	107***	1,420***	400	800	700				36
TCLP Metals Method 131	1 (6010B)																
Date Analyzed:	Units	Rep. Limit	7/21/2004	7/21/2004	7/21/2004	7/21/2004	8/13/2005	8/13/2005									
TCLP Metals	ml/L	0.002	< 0.002	0.004	< 0.002	< 0.002	0.025	0.021	0.0075	0.1							
Solids, Total (2540B)	-										· · · · ·						·
Date Analyzed:	Units	Rep. Limit					8/9/2005	8/9/2005									
Total Solids	%		78.23	80.00	79.89	81.29	81.23	87.83									
* P 25 IA C 742 4150			/ 6.23				01.23		EDA TAGO Ti 1								

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO

the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

Date of Sample Collection: 8/8/2005 8/8/2005 8/8/2005 8/9				MW-5 (3'-5')	MW-6 (5'-7')	MW-7 (5'-7')	MW-8 (7'-9')	MW-8 (15'-16')	MW-9 (3'-5')				IEPA TA					
Time of Sample Collection 9,00 AM 11,00 AM 12,30 PM 7,45 AM 8,15 AM Class Class Class T T T T T T T T T		Date of Samp	ple Collection:		` ′	` ′				Groundwa	ter Ingestion		Ingestion	J			,	Metropolitan Statistical
Contaminants of Concern: ### FTEX Organic Compounds (805A-8268) ### Date Analyzer: ### Units Rep. Limit \$117085		Time of Sam	ple Collection:	9:00 AM	11:00 AM	12:30 PM	7:45 AM	7:45 AM	8:15 AM	Class I	Class II	lential	strial/ nercial	ruction rker	lential	strial/ nercial	ruction	Background Concentration
## DECAMBRYCONDOMENS (5095ANS2669) Decamporation Page	Environmental	Laboratory Sa	mple Number:	5-2396-003	5-2396-004	5-2396-005	5-2422-001	5-2422-002	5-2422-003	Class I	Class II	Resid	Indu	Const Wo	Resic	Indu	Const	
Date Analyzed: Units Rep. Limit St2008 \$12,008 \$12,008 \$17,009 \$17,009	Contaminants of Concern:			•	•	•	•	•	•			,						"
February Personan Page Parises* \$2.0 \$2	BTEX Organic Compoun	ds (5035A/826	0B)															
Total Xylens	Date Analyzed:	Units	Rep. Limit	8/12/2005	8/12/2005	8/12/2005	8/17/2005	8/17/2005	8/17/2005									
Ethylbenzer mg/kg Varies** < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5	Benzene	μg/kg	Varies**	<2.0	<2.0	< 2.0	<2.0	<2.0	2,940	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Total Xylenes pg/kg Varies** <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Toluene	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Polymechar Aromatic Hydrocarbons (R27GC) Date Analyzed; Units Rep. Limit N1/2005 N1/	Ethylbenzene	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	13,400	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Date Analyzed: Units Rep. Limit Stripung Stri	Total Xylenes	μg/kg	Varies**	<5.0	< 5.0	< 5.0	<5.0	< 5.0	12,700	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Accesphthene Ig/Eg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Polynuclear Aromatic Hy	drocarbons (8	270C)		•	•		•			· · · · · ·							
Accomplish/lene Igg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <5	Date Analyzed:	Units	Rep. Limit	8/11/2005	8/11/2005	8/11/2005	8/12/2005	8/12/2005	8/12/2005									
Accessplithylene Igg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <	Acenaphthene	uø/kø	Varies**	<50	<50	<50	<50	<50	99	570,000	2.900.000	4.700.000	120.000.000	120.000.000				130
Anthracene μg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <		ug/kg	Varies**	<50	<50	<50	<50	<50	<50									70
Benzo(a)anthracene	_									12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				
Benzo(a)pyrene µg/kg Varies** <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15				<8.7	<8.7	<8.7	<8.7	<8.7	41.0	2,000	8,000	900*	8,000	170,000				1,800*
Benzo(k)fluoranthene µg/kg Varies** <11 <11 <11 <11 <11 <11 <11 33 49,000 250,000 9,000 78,000 1,700,000 1,700 1,700,000 1,700,000 1,700 1,700,000 1,700,000 1,700 1,700,000 1,700,000 1,700 1,700,000 1,700,000 1,700 1,700,000 1,700,000 1,700 1,700,000 1,700,000 1,700,000 1,700 1,700,000		μg/kg	Varies**	<15	<15	<15	<15	<15	37	8,000	82,000	90*	800*	17,000				2,100*
Benzo(ghi)perylene μg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Benzo(b)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	<11	37	5,000	25,000	900*	8,000	170,000				2,100*
Chrysene	Benzo(k)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	<11	33	49,000	250,000	9,000	78,000	1,700,000				1,700
Dibenzo(a,h)anthracene \(\mu_g / \kg \) Varies** \(\lambda \) \(\sigma \) \(\lambda \) \(\l	Benzo(ghi)perylene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	< 50									1,700
Fluoranthene pg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Chrysene	μg/kg	Varies**	< 50	< 50	< 50	<50	< 50	<50	160,000	800,000	88,000	780,000	17,000,000				2,700
Fluorene µg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Dibenzo(a,h)anthracene	μg/kg	Varies**	<20	<20	<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fluoranthene	μg/kg	Varies**	< 50	< 50	< 50	<50	< 50	105	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Naphthalene	Fluorene	μg/kg	Varies**	< 50	< 50	< 50	<50	< 50	126	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Phenanthrene	Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29	<29	<29	<29	<29	<29	14,000	69,000	900*	8,000	170,000				1,600*
Pyrene μg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Naphthalene	μg/kg	Varies**	<25	<25	<25	<25	<25	4,540	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Total Metals (6010B) Total Metals Method 1311 (6010B) Total Metals Met	Phenanthrene	μg/kg	Varies**		<50	<50	<50	<50	268									2,500
Date Analyzed: Units Rep. Limit 8/13/2005 8/	Pyrene	μg/kg	Varies**	< 50	<50	< 50	< 50	<50	109	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Lead mg/kg 0.2 19.0 10.9 16.3 12.1 15.4 17.8 107*** 1,420*** 400 800 700 36 TCLP Metals Method 1311 (6010B) Date Analyzed: Units Rep. Limit 8/13/2005 8/13/2005 8/13/2005 8/15/2	Total Metals (6010B)																	
TCLP Metals Method 1311 (601 0B)	Date Analyzed:	Units	Rep. Limit	8/13/2005	8/13/2005	8/13/2005	8/13/2005	8/13/2005	8/13/2005			•	•	•		•		
Date Analyzed: Units Rep. Limit 8/13/2005 8/13/2005 8/13/2005 8/15/2005	Total Lead	mg/kg	0.2	19.0	10.9	16.3	12.1	15.4	17.8	107***	1,420***	400	800	700				36
TCLP Metals ml/L 0.002 0.020 0.008 0.003 <0.002 <0.002 <0.002 0.0075 0.1 Solids, Total (2540B)	TCLP Metals Method 131	1 (6010B)																
Solids, Total (2540B)		Units	Rep. Limit	8/13/2005	8/13/2005	8/13/2005	8/15/2005	8/15/2005	8/15/2005									
		ml/L	0.002	0.020	0.008	0.003	< 0.002	< 0.002	< 0.002	0.0075	0.1							
Date Analyzed: Units Rep. Limit 8/9/2005 8/9/2005 8/9/2005 8/11/2005 8/11/2005 8/11/2005 8/11/2005	Solids, Total (2540B)																	
	Date Analyzed:	Units	Rep. Limit	8/9/2005	8/9/2005	8/9/2005	8/11/2005	8/11/2005										
Total Solids % 80.90 83.84 82.77 81.95 81.31 77.32	Total Solids	%		80.90	83.84	82.77	81.95	81.31	77.32									

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

			MW-9 (15'-16')	SB-5 (5'-7')	SB-5 (15'-16')	MW-10 (7'-9')	MW-10 (15'-16')	SB-6 (8'-10')				IEPA TA Soil Remediat	CO Tier 1 tion Objectives				
Date	e of Sam	ple Collection:	8/9/2005	8/9/2005	8/9/2005	8/9/2005	8/9/2005	1/5/2006	Groundwa	onent of the ter Ingestion e Pathway		Ingestion Exposure Pathway	y		Inhalation Exposure Pathway	,	Metropolitan Statistical Area
Time	e of Sam	ple Collection:	8:15 AM	9:00 AM	9:00 AM	9:45 AM	9:45 AM	8:25 AM	Class I	Class II	sidential	Industrial/ Commercial	onstruction Worker	dential	Industrial/ Commercial	ruction	Background Concentration
Environmental Labor	ratory Sa	mple Number	5-2422-004	5-2422-005	5-2422-006	5-2422-007	5-2422-008	6-0137-001			Resi	Indt	Const	Resi	Indt	Const Wo	
Contaminants of Concern:			•	•	•		•	•			,						
BTEX Organic Compounds (50	35A/826	0B)															
Date Analyzed:	Units	Rep. Limit	8/18/2005	8/17/2005	8/17/2005	8/17/2005	8/17/2005	1/10/2006									
Benzene	μg/kg	Varies**	79.5	<2.0	< 2.0	<2.0	<2.0	3,910	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Toluene	μg/kg	Varies**	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0	1,440	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Ethylbenzene	μg/kg	Varies**	89.9	< 5.0	< 5.0	< 5.0	< 5.0	5,740	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Total Xylenes	μg/kg	Varies**	427	< 5.0	< 5.0	< 5.0	< 5.0	14,700	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Polynuclear Aromatic Hydroca	rbons (8	270C)									•						
Date Analyzed:	Units	Rep. Limit	8/12/2005	8/12/2005	8/12/2005	8/12/2005	8/12/2005										
Acenaphthene	μg/kg	Varies**	77	< 50	< 50	< 50	< 50		570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Acenaphthylene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50										70
Anthracene	μg/kg	Varies**	257	< 50	< 50	< 50	< 50		12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(a)anthracene	μg/kg	Varies**	230	15.0	<8.7	<8.7	<8.7		2,000	8,000	900*	8,000	170,000				1,800*
Benzo(a)pyrene	μg/kg	Varies**	183	16	<15	<15	<15		8,000	82,000	90*	800*	17,000				2,100*
Benzo(b)fluoranthene	μg/kg	Varies**	192	18	<11	<11	<11		5,000	25,000	900*	8,000	170,000				2,100*
Benzo(k)fluoranthene	μg/kg	Varies**	125	<11	<11	<11	<11		49,000	250,000	9,000	78,000	1,700,000				1,700
Benzo(ghi)perylene	μg/kg	Varies**	88	< 50	< 50	< 50	< 50										1,700
Chrysene	μg/kg	Varies**	261	< 50	< 50	< 50	< 50		160,000	800,000	88,000	780,000	17,000,000			-	2,700
Dibenzo(a,h)anthracene	μg/kg	Varies**	33	<20	<20	<20	<20		2,000	7,600	90*	800	17,000				420*
Fluoranthene	μg/kg	Varies**	590	< 50	< 50	< 50	< 50		4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Fluorene	μg/kg	Varies**	98	< 50	< 50	< 50	< 50		560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	95	<29	<29	<29	<29		14,000	69,000	900*	8,000	170,000				1,600*
Naphthalene	μg/kg	Varies**	63	<25	<25	<25	<25		12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Phenanthrene	μg/kg		480	< 50	< 50	< 50	< 50										2,500
Pyrene	μg/kg	Varies**	50	< 50	< 50	< 50	< 50		4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Metals (6010B)																	
Date Analyzed:	Units	Rep. Limit	8/13/2005	8/13/2005	8/13/2005	8/13/2005	8/13/2005	1/12/2006									
Total Lead	mg/kg	0.2	11.3	18.9	12.5	10.2	12.4	10.9	107***	1,420***	400	800	700				36
TCLP Metals Method 1311 (60)																	
Date Analyzed:	Units	Rep. Limit	8/15/2005	8/15/2005	8/15/2005	8/15/2005	8/15/2005	1/13/2006									
TCLP Metals	ml/L	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.0075	0.1							
Solids, Total (2540B)														•			
Date Analyzed:	Units	Rep. Limit	8/11/2005	8/11/2005	8/11/2005	8/11/2005	8/11/2005	1/6/2006									_
Total Solids	%		80.27	79.00	79.69	83.18	81.53	78.88									
* P			l ll		- (idi - M-t			T	EDA TACO Tim 1								

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO

the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H. **Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

			SB-7 (4'-5')	SB-8 (6'-8')	SB-9 (4'-6')	SB-10 (12'-13')	SB-10 (13'-15')	SB-11 (13'-15')					CO Tier 1 tion Objectives				
	Date of Samp	ole Collection:	1/5/2006	1/5/2006	8/20/2008	8/20/2008	8/20/2008	8/20/2008	Groundwa	onent of the ter Ingestion e Pathway		Ingestion Exposure Pathway	-		Inhalation Exposure Pathway	,	Metropolitan Statistical Area
	Time of Sam	ple Collection:	9:08 AM	10:14 AM	8:26 AM	9:05 AM	9:09 AM	10:10 AM	Class I	Class II	lential	Industria// Commercial	onstruction Worker	lential	Industrial/ Commercial	Worker	Background Concentration
Environmental I	Laboratory Sa	mple Number:	6-0137-002	6-0137-003	8-3817-001	8-3817-002	8-3817-003	8-3817-004	Class I	Class II	Resid	Indu	Const Wo	Resid	Indu	Const Wo	
Contaminants of Concern:					•					•		•	•				
BTEX Organic Compounds	ls (5035A/826	0B)															
Date Analyzed:	Units	Rep. Limit	1/10/2006	1/10/2006	8/22/2008	8/25/2008	8/22/2008	8/22/2008									
Benzene	μg/kg	Varies**	<2.0	<2.0	891	4,960	110	< 5.0	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Toluene	μg/kg	Varies**	< 5.0	< 5.0	< 500	19,100	10.3	< 5.0	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Ethylbenzene	μg/kg	Varies**	< 5.0	< 5.0	4,690	79,800	< 5.0	< 5.0	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Total Xylenes	μg/kg	Varies**	< 5.0	< 5.0	3,390	274,000	< 5.0	< 5.0	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Polynuclear Aromatic Hydr	rocarbons (8	270C)	•	•	•	•	•	•									
Date Analyzed:	Units	Rep. Limit			8/27/2008	8/27/2008	8/27/2008	8/27/2008									
Acenaphthene	μg/kg	Varies**			<50	<50	<50	<50	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Acenaphthylene	μg/kg	Varies**			<50	<50	<50	<50									70
Anthracene	μg/kg	Varies**			< 50	< 50	< 50	< 50	12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(a)anthracene	μg/kg	Varies**			<8.7	<8.7	<8.7	<8.7	2,000	8,000	900*	8,000	170,000				1,800*
Benzo(a)pyrene	μg/kg	Varies**			<15	<15	<15	<15	8,000	82,000	90*	800*	17,000				2,100*
Benzo(b)fluoranthene	μg/kg	Varies**			<11	<11	<11	<11	5,000	25,000	900*	8,000	170,000				2,100*
Benzo(k)fluoranthene	μg/kg	Varies**			<11	<11	<11	<11	49,000	250,000	9,000	78,000	1,700,000		-		1,700
Benzo(ghi)perylene	μg/kg	Varies**			< 50	< 50	< 50	< 50									1,700
Chrysene	μg/kg	Varies**			< 50	< 50	< 50	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Dibenzo(a,h)anthracene	μg/kg	Varies**			<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
Fluoranthene	μg/kg	Varies**			< 50	< 50	< 50	< 50	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Fluorene	μg/kg	Varies**			< 50	< 50	< 50	< 50	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Indeno(1,2,3-cd)pyrene	μg/kg	Varies**			<29	<29	<29	<29	14,000	69,000	900*	8,000	170,000				1,600*
Naphthalene	μg/kg	Varies**			1,130	2,370	<25	<25	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Phenanthrene	μg/kg	Varies**			<50	57	<50	< 50									2,500
Pyrene	μg/kg	Varies**			< 50	< 50	< 50	< 50	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Metals (6010B)																	
Date Analyzed:		Rep. Limit	1/12/2006	1/12/2006													
Total Lead	mg/kg	0.2	10.7	9.1					107***	1,420***	400	800	700				36
TCLP Metals Method 1311											-			-			
Date Analyzed:		Rep. Limit	1/13/2006	1/13/2006	8/26/2008	8/26/2008	8/26/2008	8/26/2008			0						0-
TCLP Metals	ml/L	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.0075	0.1							
Solids, Total (2540B)			1					,									
Date Analyzed:	Units	Rep. Limit	1/6/2006	1/6/2006	8/21/2008	8/21/2008	8/21/2008	8/21/2008			1						1
Total Solids	%		81.18	82.05	81.00	83.17	83.36	81.88									

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO

the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

			SB-12 (13'-15')	SB-13 (4'-6')	SB-13 (12'-16')	CS-1	CS-2	CS-3				IEPA TA Soil Remediat	CO Tier 1 tion Objectives				
Date	e of Sam	ple Collection:	8/20/2008	8/20/2008	8/20/2008	5/7/2012	5/7/2012	5/7/2012	Groundwa	onent of the ter Ingestion e Pathway		Ingestion Exposure Pathway	y		Inhalation Exposure Pathway	y	Metropolitan Statistical Area
Time	e of Sam	ple Collection:	10:54 AM	11:46 AM	11:55 AM	9:12 AM	9:24 AM	9:45 AM	Class I	Class II	sidential	Industrial/ Commercial	onstruction Worker	dential	Industrial/ Commercial	ruction rrker	Background Concentration
Environmental Labor	ratory Sa	mple Number	8-3817-005	8-3817-006	8-3817-007	12-2123-001	12-2123-002	12-2123-003			Resi	Indt	Const	Resi	Indi	Const	
Contaminants of Concern:				•	•	•	•	'		•	ll-	•	•		•	•	l .
BTEX Organic Compounds (50	35A/826	60B)															
Date Analyzed:	Units	Rep. Limit	8/22/2008	8/22/2008	8/22/2008	5/14/2012	5/14/2012	5/14/2012									
Benzene	μg/kg	Varies**	< 5.0	597	< 5.0	< 5.0	< 5.0	< 5.0	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Toluene	μg/kg	Varies**	< 5.0	< 500	< 5.0	< 5.0	< 5.0	< 5.0	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Ethylbenzene	μg/kg	Varies**	< 5.0	3,090	< 5.0	< 5.0	< 5.0	< 5.0	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Total Xylenes	μg/kg	Varies**	< 5.0	338	< 5.0	< 5.0	< 5.0	< 5.0	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Polynuclear Aromatic Hydroca	rbons (8	270C)															
Date Analyzed:	Units	Rep. Limit	8/27/2008	8/27/2008	8/27/2008	5/15/2012	5/15/2012	5/15/2012									
Acenaphthene	μg/kg	Varies**	<50	195	< 50	<50	<50	<50	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Acenaphthylene	μg/kg	Varies**	<50	72	<50	<50	<50	<50									70
Anthracene	μg/kg		<50	199	<50	<50	<50	<50	12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(a)anthracene	μg/kg	Varies**	<8.7	171	< 8.7	<8.7	<8.7	<8.7	2,000	8,000	900*	8,000	170,000				1,800*
Benzo(a)pyrene	μg/kg		<15	139	<15	<15	<15	<15	8,000	82,000	90*	800*	17,000				2,100*
Benzo(b)fluoranthene	μg/kg	Varies**	<11	143	<11	<11	<11	<11	5,000	25,000	900*	8,000	170,000				2,100*
Benzo(k)fluoranthene	μg/kg	Varies**	<11	159	<11	<11	<11	<11	49,000	250,000	9,000	78,000	1,700,000				1,700
Benzo(ghi)perylene	μg/kg	Varies**	< 50	91	< 50	<50	<50	< 50									1,700
Chrysene	μg/kg	Varies**	< 50	163	< 50	< 50	< 50	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Dibenzo(a,h)anthracene	μg/kg	Varies**	<20	<200	<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
Fluoranthene	μg/kg	Varies**	< 50	584	< 50	< 50	< 50	< 50	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Fluorene	μg/kg	Varies**	< 50	334	< 50	< 50	< 50	< 50	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29	80	<29	<29	<29	<29	14,000	69,000	900*	8,000	170,000				1,600*
Naphthalene	μg/kg	Varies**	<25	20,600	<25	<25	<25	<25	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Phenanthrene	μg/kg	Varies**	< 50	791	< 50	< 50	< 50	< 50									2,500
Pyrene	μg/kg	Varies**	< 50	489	< 50	< 50	< 50	< 50	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Metals (6010B)				•	•	•	•				·			•	•	•	
Date Analyzed:	Units	Rep. Limit															
Total Lead	mg/kg	0.2							107***	1,420***	400	800	700				36
TCLP Metals Method 1311 (60)	10B)																
Date Analyzed:	Units	Rep. Limit	8/26/2008	8/26/2008	8/26/2008												
TCLP Metals	ml/L	0.002	0.005	< 0.002	< 0.002				0.0075	0.1							
Solids, Total (2540B)																	
Date Analyzed:	Units	Rep. Limit	8/21/2008	8/21/2008	8/21/2008	5/10/2012	5/10/2012	5/10/2012		•				•	•	•	
Total Solids	%		79.35	83.32	79.37	79.26	80.06	74.91									
* P		· · · · · · · · · · · · · · · · · · ·			- (itlin Maturo			t T	EDA TACO Tim 1		•						·

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO

the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

Date of Sample Cellection \$8.201 \$8.201 \$8.202				CS-4	CS-5	CS-6	CS-7	CS-8	CS-9				IEPA TA Soil Remediat	CO Tier 1 tion Objectives				
Time of Sample Collections S27 AM S41 AM S49 AM I132 AM	Date	of Samp	le Collection:	5/8/2012	5/8/2012	5/8/2012	5/8/2012	5/8/2012	5/8/2012	Groundwa	ter Ingestion			y			•	Statistical
Contaminans of Concerns ### FIX Organic Compounds (SQS-No-Robin) ### Port Analyses Data Analyses Units Rep. Limit \$15901 \$14902 \$14	Time	of Samp	ole Collection:	8:27 AM	8:41 AM	8:50 AM	11:32 AM	11:45 AM	12:07 PM	Class I	Class II	lential	strial/ nercial	ruction rker	lential	strial/ nercial	ruction	Background
BIEX Organic Compounds (835-8A5698) Date Analyzed: Units Rep. Limit 8 rep. Limit	Environmental Labor	atory Sai	mple Number:	12-2123-004	12-2123-005	12-2123-006	12-2123-007	12-2123-008	12-2123-009		C.M.S.J 11		Indu	Const	Resid	Indu	Const	
Date Analyzed: Usits Rep. Limit \$15391 \$143912	Contaminants of Concern:			•	•	•	•	•				,-						
Enzence	BTEX Organic Compounds (50)	35A/8260	0B)															
Form Part	Date Analyzed:	Units	Rep. Limit	5/15/2012	5/14/2012	5/14/2012	5/15/2012	5/14/2012	5/14/2012									
Ethylbenzene 195 kg Varies** 30,900 2,230 <5.0 115,000 <5.0 5.0 13,000 19,000 7,000,000 20,000,000 40,000 40,000 40,000 58,000 Folyauctear Aromatic Hydrocarbours (8270C)	Benzene	μg/kg	Varies**	5,490	355	< 5.0	18,200	5.4	< 5.0	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Fig. Exp.	Toluene	μg/kg	Varies**	18,800	< 500	< 5.0	166,000	< 5.0	< 5.0	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Polymechar Aromatic Hydrocarbons (\$270C) Date Analyzed: Units Rep. Limit \$18500L \$18	Ethylbenzene	μg/kg	Varies**	30,900	2,230	< 5.0	115,000	< 5.0	< 5.0	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Date Analyzed: Units Rep. Limit 515/901 515/90	Total Xylenes	μg/kg	Varies**	96,400	2,700	< 5.0	450,000	< 5.0	< 5.0	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Accessphithylene Inches	Polynuclear Aromatic Hydrocar	rbons (82	270C)	•	•	•	•		•									
Recomplethylene 192/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <5	Date Analyzed:	Units	Rep. Limit	5/15/2012	5/15/2012	5/15/2012	5/15/2012	5/15/2012	5/15/2012									
Accompthylene Inches Inc	Acenaphthene	ug/kg	Varies**	<50	<50	<50	60	<50	<50	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Anthracene		цо/ко	Varies**	<50	<50	<50	<50	<50	<50									70
Benzo(a)anthracene	1 -									12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				
Benzo(a)pyrene ng/kg Varies** <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15				<8.7	<8.7	<8.7	14.4	<8.7				900*	8,000	170,000				1.800*
Benzo(k)fluoranthene µg/kg Varies** <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11			Varies**	<15	<15	<15	<15	<15	<15	8,000	82,000	90*	800*	17,000				2,100*
Benzo(ghi)perylene	Benzo(b)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	<11	<11	5,000	25,000	900*	8,000	170,000				2,100*
Chrysene μg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Benzo(k)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	<11	<11	49,000	250,000	9,000	78,000	1,700,000				1,700
Dibenzo(a,h)anthracene µg/kg Varies** <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <2	Benzo(ghi)perylene	μg/kg	Varies**	<50	<50	<50	<50	<50	<50									1,700
Fluoranthene µg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Chrysene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Fluorene	Dibenzo(a,h)anthracene	μg/kg	Varies**	<20	<20	<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fluoranthene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	< 50	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fluorene	μg/kg	Varies**	< 50	< 50	< 50	91	< 50	< 50	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29	<29	<29	<29	<29	<29	14,000	69,000	900*	8,000	170,000				1,600*
Pyrene	Naphthalene	μg/kg	Varies**	2,110	619	<25	5,580	<25	<25	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Total Metals (6010B) Total Lead Mig/kg 0.2	Phenanthrene	μg/kg	Varies**	< 50	< 50	< 50	116	< 50	< 50									2,500
Date Analyzed: Units Rep. Limit	Pyrene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	< 50	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Lead mg/kg 0.2 107*** 1,420*** 400 800 700 36 TCLP Metals Method 1311 (6010B) Date Analyzed: Units Rep. Limit 0.0075 0.1	Total Metals (6010B)			•	•	•	•	•	•									
TCLP Metals Method 1311 (6010B)	Date Analyzed:	Units	Rep. Limit															
Date Analyzed: Units Rep. Limit	Total Lead	mg/kg	0.2							107***	1,420***	400	800	700				36
TCLP Metals ml/L 0.002 0.0075 0.1	TCLP Metals Method 1311 (601	0B)																
Solids, Total (2540B) Date Analyzed: Units Rep. Limit 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012		Units	Rep. Limit					-										
Date Analyzed: Units Rep. Limit 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012		ml/L	0.002							0.0075	0.1							
	Solids, Total (2540B)																	
Total Solids % 78.39 78.08 80.30 80.00 81.70 81.56	Date Analyzed:	Units	Rep. Limit	5/10/2012	5/10/2012	5/10/2012	5/10/2012	5/10/2012	5/10/2012									
	Total Solids	%		78.39	78.08	80.30	80.00	81.70	81.56									

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

			CS-10	CS-11	CS-12	CS-13	CS-14	CS-15				IEPA TA Soil Remediat	CO Tier 1 ion Objectives				
1	Date of Samp	ole Collection:	5/8/2012	5/9/2012	5/9/2012	5/9/2012	5/9/2012	5/9/2012	Groundwa	onent of the ter Ingestion e Pathway		Ingestion Exposure Pathway	y		Inhalation Exposure Pathway	<i>y</i>	Metropolitan Statistical Area
Т	Time of Samp	ole Collection:	12:22 PM	9:36 AM	9:47 AM	10:39 AM	10:52 AM	11:33 AM	Class I	Class II	dential	Industrial/ Commercial	onstruction Worker	dential	Industrial/ Commercial	Worker	Background Concentration
Environmental L	aboratory Sa	mple Number:	12-2123-010	12-2160-001	12-2160-002	12-2160-003	12-2160-004	12-2160-005	-		Resi	Indt	Const We	Resi	Indt	Const	
Contaminants of Concern:		'					•		•	•						•	
BTEX Organic Compounds	s (5035A/826	0B)															
Date Analyzed:	Units	Rep. Limit	5/15/2012	5/15/2012	5/15/2012	5/15/2012	5/15/2012	5/15/2012									
Benzene	μg/kg	Varies**	10,800	7.9	14.2	3,550	8,150	< 5.0	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Toluene	μg/kg	Varies**	128,000	< 5.0	< 5.0	51,200	124,000	< 5.0	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Ethylbenzene	μg/kg	Varies**	44,400	< 5.0	< 5.0	32,300	51,700	< 5.0	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Total Xylenes	μg/kg	Varies**	183,000	< 5.0	< 5.0	159,000	258,000	< 5.0	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Polynuclear Aromatic Hydro	rocarbons (82	270C)															
Date Analyzed:	Units	Rep. Limit	5/15/2012	5/15/2012	5/15/2012	5/15/2012	5/15/2012	5/15/2012									
Acenaphthene	ug/kg	Varies**	<50	<50	<50	58	99	<50	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Acenaphthylene	ug/kg	Varies**	<50	<50	<50	<50	<50	<50									70
Anthracene	μg/kg	Varies**	<50	<50	<50	<50	66	<50	12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(a)anthracene	μg/kg	Varies**	10.6	<8.7	<8.7	16.2	66.9	66.8	2,000	8,000	900*	8,000	170,000				1,800*
Benzo(a)pyrene	μg/kg	Varies**	<15	<15	<15	<15	44	55	8,000	82,000	90*	800*	17,000				2,100*
Benzo(b)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	45	58	5,000	25,000	900*	8,000	170,000				2,100*
Benzo(k)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	44	51	49,000	250,000	9,000	78,000	1,700,000				1,700
Benzo(ghi)perylene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	< 50		-	_						1,700
Chrysene	μg/kg	Varies**	< 50	< 50	< 50	< 50	61	52	160,000	800,000	88,000	780,000	17,000,000				2,700
Dibenzo(a,h)anthracene	μg/kg	Varies**	<20	<20	<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
Fluoranthene	μg/kg	Varies**	< 50	< 50	< 50	51	203	103	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Fluorene	μg/kg	Varies**	66	< 50	< 50	77	139	< 50	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29	<29	<29	<29	33	38	14,000	69,000	900*	8,000	170,000				1,600*
Naphthalene	μg/kg	Varies**	4,860	<25	<25	11,200	11,300	<25	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Phenanthrene	μg/kg	Varies**	101	< 50	< 50	138	339	< 50									2,500
Pyrene	μg/kg	Varies**	< 50	< 50	< 50	58	194	100	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Metals (6010B)																	
Date Analyzed:	Units	Rep. Limit															
Total Lead	mg/kg	0.2							107***	1,420***	400	800	700				36
TCLP Metals Method 1311	(/																
Date Analyzed:		Rep. Limit									0						0-
TCLP Metals	ml/L	0.002							0.0075	0.1							
Solids, Total (2540B)																	
Date Analyzed:	Units	Rep. Limit	5/10/2012	5/11/2012	5/11/2012	5/11/2012	5/11/2012	5/11/2012									
Total Solids	%		81.82	82.32	82.16	79.71	77.94	82.05									

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO

the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

Date of Sample Collection 59/2012 59/201	
Environmental Laboratory Sample Number 12:2160.006 12:2160.007 12:2160.008 12:2160.009 12:2160.009 12:2120.01 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2012.001 12	Metropolitan Statistical Area
Contaminants of Concern: Excision Exci	Background Concentration
Date Analyzed: Units Rep. Limit S152012 S15201	
Date Analyzed: Units Rep. Limit \$195001 \$5182002 \$518	All .
Benzene μg/kg Varies** <5.0 3,150 7,570 1,520 3,640 <5.0 30 170 12,000 10,000 2,300,000 800 1,600 2,200	
Toluene μg/kg Varies** <5.0 60,600 95,400 1,520 14,000 <5.0 12,000 29,000 16,000,000 410,000,000 650,000 650,000 650,000 620,000 42,000 650,000 6	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Total Xylenes μg/kg Varies** <5.0 197,000 195,000 7,430 116,000 <5.0 150,000 150,000 16,000,000 41,000,000 320,000 320,000 320,000 5,600	
Polynuclear Aromatic Hydrocarbons (8270C) Date Analyzed: Units Rep. Limit S152012 S1	
Date Analyzed: Units Rep. Limit S152012 S1520	
Acenaphthene μg/kg Varies** <50 56 64 55 <50 <50 570,000 2,900,000 4,700,000 120,000,000 120,000,000	di
Acenaphthene μg/kg Varies** <50 56 64 55 <50 <50 570,000 2,900,000 4,700,000 120,000,000 120,000,000	
Acenaphthylene $\mu g/kg$ $Varies**$ <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	130
Anthracene μg/kg Varies** <50 <50 60 <50 <50 <50 <50 2,000,000 59,000,000 23,000,000 610,000,000	70
Benzo(a)anthracene μg/kg Varies** <8.7 19.0 54.6 60.3 25.2 <8.7 2,000 8,000 900* 8,000 170,000 ··· ··· ··· ··· Benzo(a)pyrene μg/kg Varies** <15 <15 31 47 17 <15 8,000 82,000 90° 800° 17,000 ··· ··· ··· ··· ··· ··· Benzo(b)fluoranthene μg/kg Varies** <11 12 34 51 18 <11 5,000 25,000 900° 8,000 170,000 ···	400
Benzo(a)pyrene μg/kg Varies** <15 <15 31 47 17 <15 8,000 82,000 90* 800* 17,000	1.800*
Benzo(b)fluoranthene µg/kg Varies**	2,100*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,100*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,700
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,700
Fluoranthene $\mu g/kg$ $Varies**$ <50 54 153 177 74 <50 $4,300,000$ $21,000,000$ $3,100,000$ $82,000,000$ $82,000,000$ $$ $$ $$ Fluoranthene $\mu g/kg$ $Varies**$ <50 68 100 93 54 <50 $560,000$ $2,800,000$ $3,100,000$ $82,000,000$ $82,000,000$ $$ $$ $$ $$ Indeno(1,2,3-cd)pyrene $\mu g/kg$ $Varies**$ <29 <29 <29 34 <29 <29 $14,000$ $69,000$ 900 * $8,000$ $170,000$ $$ $$ $$ $$ $$ $$ $$	2,700
Fluorene $\mu g/kg$ $Varies**$ <50 68 100 93 54 <50 $560,000$ $2,800,000$ $3,100,000$ $82,000,000$ $82,000,000$ $$ $$ $$ $$ $$ $$ $$	420*
	4,100
Naphthalene μg/kg Varies** <25 9,090 6,930 6,940 4,020 <25 12,000 18,000 1,600,000 41,000,000 4,100,000 170,000 270,000 1,800 Phenanthrene μg/kg Varies** <50	180
Phenanthrene μg/kg Varies** <50 129 227 231 113 <50 <	1,600*
Pyrene µg/kg Varies** <50 56 139 161 70 <50 4,200,000 21,000,000 61,000,000 61,000,000	200
	2,500
Total Metals (6010R)	3,000
Total Mictals (1911)	
Date Analyzed: Units Rep. Limit	
Total Lead mg/kg 0.2 1107*** 1,420*** 400 800 700	36
TCLP Metals Method 1311 (6010B)	
Date Analyzed: Units Rep. Limit	
TCLP Metals ml/L 0.002 0.0075 0.1	
Solids, Total (2540B)	
Date Analyzed: Units Rep. Limit 5/11/2012 5/11/2012 5/11/2012 5/11/2012 5/11/2012 5/11/2012 5/11/2012 5/14/2012	
Total Solids % 82.12 78.95 78.42 80.66 79.82 78.17	

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO

the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H. **Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

	e of Samp					CS-25	CS-26	CS-27				Soil Remediat	ion Objectives				
Time		le Collection:	5/10/2012	5/10/2012	5/10/2012	5/10/2012	5/10/2012	5/10/2012	Groundwa	onent of the er Ingestion Pathway		Ingestion Exposure Pathway	y		Inhalation Exposure Pathway		Metropolitan Statistical Area
	e of Samp	le Collection:	7:42 AM	7:50 AM	8:03 AM	8:12 AM	11:21 AM	11:33 AM	Class I	Class II	lential	Industrial/ Commercial	onstruction Worker	lential	Industrial/ Commercial	Worker	Background Concentration
Environmental Labor	ratory Sar	nple Number:	12-2212-002	12-2212-003	12-2212-004	12-2212-005	12-2212-006	12-2212-007		0	Resid	Indu	Const Wo	Resi	Indu	Const Wo	
Contaminants of Concern:		•					•				,-						,
BTEX Organic Compounds (50)	35A/8260)B)															
Date Analyzed:	Units	Rep. Limit	5/19/2012	5/19/2012	5/19/2012	5/19/2012	5/20/2012	5/20/2012									
Benzene	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	976	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Toluene	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 500	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Ethylbenzene	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	70,900	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Total Xylenes	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	61,700	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Polynuclear Aromatic Hydrocai	rbons (82	270C)					•										V
Date Analyzed:	Units	Rep. Limit	5/16/2012	5/16/2012	5/16/2012	5/16/2012	5/16/2012	5/16/2012									
Acenaphthene	μg/kg	Varies**	<50	<50	<50	<50	<50	202	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Acenaphthylene	μg/kg	Varies**	<50	<50	<50	<50	< 50	< 50									70
Anthracene	μg/kg	Varies**	< 50	<50	< 50	< 50	<50	60	12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(a)anthracene	μg/kg	Varies**	<8.7	<8.7	<8.7	<8.7	<8.7	36.7	2,000	8,000	900*	8,000	170,000				1,800*
Benzo(a)pyrene	μg/kg	Varies**	<15	<15	<15	<15	<15	20	8,000	82,000	90*	800*	17,000				2,100*
Benzo(b)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	<11	22	5,000	25,000	900*	8,000	170,000				2,100*
Benzo(k)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	<11	20	49,000	250,000	9,000	78,000	1,700,000				1,700
Benzo(ghi)perylene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	< 50									1,700
Chrysene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Dibenzo(a,h)anthracene	μg/kg	Varies**	<20	<20	<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
Fluoranthene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	113	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Fluorene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	282	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29	<29	<29	<29	<29	<29	14,000	69,000	900*	8,000	170,000				1,600*
Naphthalene	μg/kg	Varies**	<25	<25	<25	<25	<25	20,500	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Phenanthrene	μg/kg	Varies**	< 50	< 50	< 50	< 50	53	415									2,500
Pyrene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	133	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Metals (6010B)							-	-									
Date Analyzed:	Units	Rep. Limit				-				•	•	•	•	•		•	
Total Lead	mg/kg	0.2							107***	1,420***	400	800	700				36
TCLP Metals Method 1311 (601	- /			·													
Date Analyzed:	Units	Rep. Limit															
TCLP Metals	ml/L	0.002							0.0075	0.1							
Solids, Total (2540B)					,				<u> </u>								
Date Analyzed:	Units	Rep. Limit	5/14/2012	5/14/2012	5/14/2012	5/14/2012	5/14/2012	5/14/2012									
Total Solids	%		80.13	81.27	81.35	76.55	77.74	78.92									

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

Statistical Part Statistical Color Stati				CS-28	CS-29	CS-30	CS-31	CS-32	CS-33	IEPA TACO Tier 1 Soil Remediation Objectives								
Reviewmental Laboratory Sample Number 12 221 208 12	Date of Sample Collection		ole Collection:	5/10/2012	5/11/2012	5/11/2012	5/11/2012	5/11/2012	5/11/2012	Groundwater Ingestion							Metropolitan Statistical	
Contaminant of Concerns First Organic Compounds (SUSX-NEOHI) First Organic Compounds (SUSX		Time of Sam	ple Collection:	11:42 AM	7:33 AM	7:41 AM	7:55 AM	8:11 AM	8:19 AM	Class I	Class II	lential	strial/ nercial	ruction rker	lential	strial/ nercial	ruction rker	Background Concentration
Decay Composed C	Environmental	Laboratory Sa	mple Number:	12-2212-008	12-2212-009	12-2212-010	12-2212-011	12-2212-012	12-2212-013			Resic	Indu	Const Wo	Resi	Indu	Const	
Date Analyzed: Usits Rep. Limit \$50.001 \$50.00	Contaminants of Concern:							•		•	•						•	
Bezzene	BTEX Organic Compound	ds (5035A/826	0B)															
Foliage Inference Infere	Date Analyzed:	Units	Rep. Limit	5/20/2012	5/20/2012	5/20/2012	5/20/2012	5/20/2012	5/20/2012									
Ethylenarene	Benzene	μg/kg	Varies**	23.6	< 5.0	< 5.0	124	12,000	40,200	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
First Mystems Mystem	Toluene	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	13.6	< 500	<5,000	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Polymeteran Aromatic Hydrocarbous (827) C) Diate Analyzed: Units Rep. Limit Statistic Sta	Ethylbenzene	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	715	57,000	238,000	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Date Analyzed: Units Rep. Limit Sisonal Sisona	Total Xylenes	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	525	103,000	306,000	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Acenaphthene µg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Polynuclear Aromatic Hyo	irocarbons (8	270C)						, ,	,						•		
Acenaphthene µg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Date Analyzed:	Units	Rep. Limit	5/16/2012	5/16/2012	5/16/2012	5/16/2012	5/16/2012	5/16/2012									
Accomplatylene ug/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50				<50	<50	<50	<50	497	507	570,000	2.900.000	4.700.000	120.000.000	120.000.000				130
Anthracene		100								/	, ,	,,	.,,	.,,				
Benzo(a)anthracene		100								12.000.000	59,000,000	23,000,000	610,000,000	610.000.000				
Benzo(a)pyrene µg/kg Varies** <15 <15 <15 <23 353 165 8,000 82,000 90* 800* 17,000 2,100*										,,	/ / /	- / /	,,	,,				
Benzo(b)fluoranthene	()									,	- /		- /	,				
Renzo(ghi)perylene pg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	(717											900*	8,000					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Benzo(k)fluoranthene	μg/kg	Varies**	<11	<11	<11	24	208	188	49,000	250,000	9,000	78,000	1,700,000				1,700
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Benzo(ghi)perylene	μg/kg	Varies**	<50	<50	<50	<50	208	123									1,700
Fluoranthene pg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <5	Chrysene	μg/kg		<50	<50	< 50	<50	368	142	160,000	800,000	88,000	780,000	17,000,000				2,700
Fluorene pg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Dibenzo(a,h)anthracene	μg/kg	Varies**	<20	<20	<20	<20	53	35	2,000	7,600	90*	800	17,000				420*
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fluoranthene	μg/kg	Varies**	< 50	< 50	< 50	79	1,040	423	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Naphthalene μg/kg Varies** <25 <25 47 515 32,000 21,200 12,000 18,000 1,600,000 41,000,000 41,000,000 41,000,000 270,000 1,800 200	Fluorene	μg/kg	Varies**	<50	<50	<50	<50	584	695	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Phenanthrene	Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29	<29	<29	<29	231	138	14,000	69,000	900*	8,000	170,000				1,600*
Pyrene	Naphthalene	μg/kg	Varies**	<25	<25	47	515	32,000	21,200	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Total Metals (6010B) Total Analyzed: Units Rep. Limit	Phenanthrene	μg/kg	Varies**	< 50	< 50	< 50	109	1,780	1,720		-	_						2,500
Date Analyzed: Units Rep. Limit	Pyrene	μg/kg	Varies**	< 50	< 50	< 50	76	1,020	519	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Date Analyzed: Units Rep. Limit	Total Metals (6010B)				•	•		•										
TCLP Metals Method 1311 (601 0B) Date Analyzed: Units Rep. Limit		Units	Rep. Limit															
Date Analyzed: Units Rep. Limit	Total Lead	mg/kg	0.2							107***	1,420***	400	800	700				36
TCLP Metals ml/L 0.002 0.0075 0.1	TCLP Metals Method 131	1 (6010B)																
Solids, Total (2540B) Date Analyzed: Units Rep. Limit 5/14/2012 5	Date Analyzed:	Units	Rep. Limit															
Date Analyzed: Units Rep. Limit 5/14/2012 5/14/2012 5/14/2012 5/14/2012 5/14/2012 5/14/2012 5/14/2012	TCLP Metals	ml/L	0.002							0.0075	0.1							
Sut That year of the Period of	Solids, Total (2540B)	-,									•				•	•		
7.10 11	Date Analyzed:	Units	Rep. Limit	5/14/2012	5/14/2012	5/14/2012	5/14/2012	5/14/2012	5/14/2012									
Total Solids % 81.09 /9./8 /9.28 //.30 8/.09 83.48	Total Solids	%		81.09	79.78	79.28	77.36	87.09	85.48									

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

1 Inite of Sample Confection 4 0.27 Alvi				CS-34	_	SB-4R 3-5'	SB-4R 5-7'	SB-A 3-5'	SB-A 5-7'	IEPA TACO Tier 1 Soil Remediation Objectives								
Environmental Laboratory Sample Number 12-221-2014 18-6058-001 18-6058-002 18-6058-003 18-6058-003 18-6058-003 18-6058-004	Date of Sample Collection:		5/11/2012		10/10/2018	10/10/2018	10/10/2018	10/10/2018	Groundwa	Groundwater Ingestion								
Contaminants of Concern:		Time of Sam	ple Collection:	8:29 AM		9:15 AM	9:20 AM	10:05 AM	10:10 AM	Class I	Class II	lential	strial/ nercial	ruction rker	lential	strial/ nercial	ruction rker	Area Background Concentration
## DEFA CAMPAYOR Units Rep. Limit 520901	Environmental	12-2212-014		18-6058-001	18-6058-002	18-6058-003	18-6058-004			Resic	Indu	Const Wo	Resi	Indu	Const			
Date Analyzed: Turk Rep. Limit Sept. Sept.	Contaminants of Concern:			•	•		•	•	•			,						
Benzence	BTEX Organic Compoun	ds (5035A/826	(0B)															
Toleane	Date Analyzed:	Units	Rep. Limit	5/20/2012	_	10/15/2018	10/15/2018	10/15/2018	10/15/2018									
Ethylbenzene	Benzene	μg/kg	Varies**	26,000		56.0	2,120	16,400	790	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Total Nyshees Ing/kg Varies** 225.000 <500 <500 64.900 776 150,000 150,000 16,000,000 41,000,000 320,000 320,000 5,600	Toluene	μg/kg	Varies**	<5,000		< 500	< 500	2,440	< 500	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Polymericar Aromatic Hydrocarbons (8270C) Date Analyzed: Units Rep. Limit S1020 101172018 10152018	Ethylbenzene	μg/kg	Varies**	168,000		2,550	694	63,000	3,390	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Date Analyzed: Units Rep. Limit S162012 10172018 10152018 10152018 10152018	Total Xylenes	μg/kg	Varies**	225,000		< 500	< 500	64,900	776	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Acenaphthene μg/kg Varies** 726 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50														0				
Access	Date Analyzed:	Units	Rep. Limit	5/16/2012		10/17/2018	10/15/2018	10/15/2018	10/15/2018									
Access	Acenaphthene	ug/kg	Varies**	726		<50	<50	<50	<50	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Anthracene				<50		<50	<50	<50	<50									70
Benzo(a)pyrene µg/kg Varies** 24 55 24 174 <15 8,000 82,000 90° 800° 17,000				178		<50	<50	<50	<50	12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(b)fluoranthene	Benzo(a)anthracene	μg/kg	Varies**	53.8		60.5	24.4	182	<8.7	2,000	8,000	900*	8,000	170,000				1,800*
Benzo(k)fluoranthene	Benzo(a)pyrene	μg/kg	Varies**	24		55	24	174	<15	8,000	82,000	90*	800*	17,000				2,100*
Benzo(ghi)perylene μg/kg Varies** <50 53 <50 130 <50	Benzo(b)fluoranthene	μg/kg	Varies**	27		53	25	198	<11	5,000	25,000	900*	8,000	170,000				2,100*
Chrysene	Benzo(k)fluoranthene	μg/kg	Varies**	25		82	33	199	<11	49,000	250,000	9,000	78,000	1,700,000				1,700
Dibenzo(a,h)anthracene pg/kg Varies** <20	Benzo(ghi)perylene	μg/kg	Varies**	< 50		53	< 50	130	< 50									1,700
Fluoranthene µg/kg Varies** 266 160 75 570 <50 4,300,000 21,000,000 3,100,000 82,000,000 Fluoranthene µg/kg Varies** 940 <50 <50 <50 <50 <50 <50 560,000 2,800,000 3,100,000 82,000,000 82,000,000 Fluoranthene µg/kg Varies** <29 44 <29 146 <29 14,000 69,000 900* 8,000 170,000 170,000 270,000 1,800	Chrysene	μg/kg	Varies**	< 50		93	< 50	237	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Fluorene	Dibenzo(a,h)anthracene	μg/kg	Varies**	<20		<20	<20	36	<20	2,000	7,600	90*	800	17,000				420*
Indeno(1,2,3-cd)pyrene Igg kg Varies** <29 44 <29 146 <29 14,000 69,000 900* 8,000 170,000 Naphthalene Igg kg Varies** 52,300 1,050 593 1,490 259 12,000 18,000 1,600,000 41,000,000 4,100,000 170,000 270,000 1,800 Naphthalene Igg kg Varies** 1,140 87 58 369 <50 Naphthalene Igg kg Varies** 322 147 56 414 <50 4,200,000 21,000,000 2,300,000 61,000,000 61,000,000 Naphthalene Igg kg Naphthalene Igg kg Varies** 322 147 56 414 <50 4,200,000 21,000,000 2,300,000 61,000,000 61,000,000 Naphthalene Igg kg Naphthalene Igg kg Naphthalene Igg kg Naphthalene Igg kg Naphthalene Naphthalene Igg kg Naphthalene Naphthalene Igg kg Naphthalene Naphthalene Igg kg Igg kg kg Igg kg kg Igg kg k	Fluoranthene	μg/kg	Varies**	266		160	75	570	< 50	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Naphthalene	Fluorene	μg/kg	Varies**	940		< 50	< 50	< 50	< 50	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Phenanthrene Igg/kg Varies** 1,140 87 58 369 <50	Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29		44	<29	146		14,000	69,000	900*	8,000	170,000				1,600*
Pyrene ng/kg Varies** 322 147 56 414 <50 4,200,000 21,000,000 2,300,000 61,000,000 61,000,000	Naphthalene	μg/kg	Varies**	52,300		1,050	593	1,490	259	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Total Metals (6010B) Date Analyzed: Units Rep. Limit 107*** 1,420*** 400 800 700	Phenanthrene	μg/kg	Varies**	1,140		87	58	369	< 50									2,500
Date Analyzed: Units Rep. Limit	Pyrene	μg/kg	Varies**	322		147	56	414	<50	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Lead mg/kg 0.2 107*** 1,420*** 400 800 700 TCLP Metals Method 1311 (6010B) Date Analyzed: Units Rep. Limit	Total Metals (6010B)																	
TCLP Metals Method 1311 (6010B) Date Analyzed: Units Rep. Limit	Date Analyzed:	Units	Rep. Limit					-				•		•	•	•		
Date Analyzed: Units Rep. Limit	Total Lead	mg/kg	0.2							107***	1,420***	400	800	700				36
TCLP Metals ml/L 0.002 0.0075 0.1	TCLP Metals Method 131	11 (6010B)		•		•	•	•										
			Rep. Limit												-			
Solids, Total (2540B)		ml/L	0.002							0.0075	0.1							
Date Analyzed: Units Rep. Limit 5/14/2012 10/12/2018 10/12/2018 10/12/2018 10/12/2018	Date Analyzed:	Units	Rep. Limit	5/14/2012		10/12/2018	10/12/2018	10/12/2018	10/12/2018									<u> </u>
Total Solids % 71.94 76.94 80.95 78.88 86.84	Total Solids	%		71.94		76.94	80.95	78.88	86.84							_		

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO

the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

EXHIBIT B-2Summary of Analytical Results - Groundwater

	MV	V-1	MV	W-2	MV	W-3	IEPA TACO				
Date	of Samp	le Collection:	7/22/2004	10/8/2008	7/22/2004	10/8/2008	7/22/2004	10/8/2008		oundwater	
Time	of Samp	ole Collection:	11:10 AM	10:11 AM	11:20 AM	10:21 AM	11:30 AM	10:38 AM	Remediation Objectives		
Environmental Labora	atory Sai	mple Number:	32627	8-4577-001	32628	8-4577-002	32629	8-4577-003	Class I	Class II	
Contaminants of Concern:	<u> </u>	_				ı	ı				
BTEX/MTBE Organic Comp	ounds (5030B/8260B))								
Date Analyzed:	Units	Rep. Limit	7/28/2004	10/14/2008	7/28/2004	10/14/2008	7/29/2004	10/14/2008			
Benzene	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	26.7	32.3	5.0	25.0	
Toluene	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	1,000	2,500	
Ethylbenzene	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	700	1000	
Total Xylenes	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50	< 5.0	10,000	10,000	
Polynuclear Aromatic Hydro	carbons	(8270C)									
Date Analyzed:	Units	Rep. Limit	7/27/2004	10/14/2008	7/27/2004	10/14/2008	7/27/2004	10/14/2008			
Acenaphthene	ug/L	10	<10	<10	<10	<10	<10	<10	420	2,100	
Acenaphthylene	ug/L	10	<10	<10	<10	<10	<10	<10			
Anthracene	ug/L	5	<5	<5	<5	<5	<5	<5	2,100	10,500	
Benzo(a)anthracene	ug/L	0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	0.13	0.65	
Benzo(a)pyrene	ug/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.20	2.00	
Benzo(b)fluoranthene	ug/L	0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	0.18	0.90	
Benzo(k)fluoranthene	ug/L	0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	0.17	0.85	
Benzo(ghi)perylene	ug/L	0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4			
Chrysene	ug/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	1.5	7.5	
Dibenzo(a,h)anthracene	ug/L	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.3	1.5	
Fluoranthene	ug/L	2	<2	<2	<2	<2	<2	<2	280	1,400	
Fluorene	ug/L	2	<2	<2	<2	<2	<2	<2	280	1,400	
Indeno(1,2,3-cd)pyrene	ug/L	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.43	2.15	
Naphthalene	ug/L	10	<10	<10	<10	<10	<10	<10	140	220	
Phenanthrene	ug/L	5	<5	<5	<5	<5	<5	<5			
Pyrene	ug/L	2	<2	<2	<2	<2	<2	<2	210	1,050	
Metals (3010A/6010B)											
Date Analyzed:	Units	Rep. Limit	7/27/2004	10/10/2008	7/27/2004	10/10/2008	7/27/2004	10/10/2008			
Lead	mg/L	0.002	< 0.002	< 0.002	0.003	< 0.002	< 0.002	< 0.002	0.0075	0.1	

Note: Analytical testing results for lead are expressed in parts-per-million (ppm) concentrations.

EXHIBIT B-2Summary of Analytical Results - Groundwater

	MV	V-4	MV	W-5	MV	V-6	IEPA TACO				
Date	of Samp	ole Collection:	7/22/2004	10/8/2008	8/16/2005	10/8/2008	8/16/2005	10/8/2008	Tier 1 Groundwater Remediation Objectives		
Time	of Samp	ole Collection:	11:40 AM	10:47 AM	11:00 AM	11:04 AM	11:30 AM	11:18 AM	Remediation Objectives		
Environmental Labora	atory Sai	mple Number:	32630	8-4577-004	5-2534-001	8-4577-005	5-2534-002	8-4577-006	Class I	Class II	
Contaminants of Concern:										1	
BTEX/MTBE Organic Comp	ounds (5030B/8260B))								
Date Analyzed:	Units	Rep. Limit	7/29/2004	10/15/2008	8/22/2005	10/14/2008	8/22/2005	10/14/2008			
Benzene	μg/L	5.0	3,950	1,480	< 5.0	< 5.0	< 5.0	< 5.0	5.0	25.0	
Toluene	μg/L	5.0	2,790	45.1	< 5.0	< 5.0	< 5.0	< 5.0	1,000	2,500	
Ethylbenzene	μg/L	5.0	383	158	< 5.0	<5.0	< 5.0	< 5.0	700	1000	
Total Xylenes	μg/L	5.0	1,940	279	< 5.0	<5.0	< 5.0	< 5.0	10,000	10,000	
Polynuclear Aromatic Hydro	carbons	(8270C)									
Date Analyzed:	Units	Rep. Limit	7/27/2004	10/14/2008	8/19/2005	10/14/2008	8/19/2005	10/14/2008			
Acenaphthene	ug/L	10	<10	<10	<10	<10	<10	<10	420	2,100	
Acenaphthylene	ug/L	10	<10	<10	<10	<10	<10	<10			
Anthracene	ug/L	5	<5	<5	<5	<5	<5	<5	2,100	10,500	
Benzo(a)anthracene	ug/L	0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	0.13	0.65	
Benzo(a)pyrene	ug/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.20	2.00	
Benzo(b)fluoranthene	ug/L	0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	0.18	0.90	
Benzo(k)fluoranthene	ug/L	0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	0.17	0.85	
Benzo(ghi)perylene	ug/L	0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4			
Chrysene	ug/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	1.5	7.5	
Dibenzo(a,h)anthracene	ug/L	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.3	1.5	
Fluoranthene	ug/L	2	<2	<2	<2	<2	<2	<2	280	1,400	
Fluorene	ug/L	2	<2	<2	<2	<2	<2	<2	280	1,400	
Indeno(1,2,3-cd)pyrene	ug/L	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.43	2.15	
Naphthalene	ug/L	10	34	53	<10	<10	<10	<10	140	220	
Phenanthrene	ug/L	5	<5	<5	<5	<5	<5	<5			
Pyrene	ug/L	2	<2	<2	<2	<2	<2	<2	210	1,050	
Metals (3010A/6010B)										-	
Date Analyzed:	Units	Rep. Limit	7/27/2004	10/10/2008	8/23/2005	10/10/2008	8/23/2005	10/10/2008			
Lead	ug/L	10	0.011	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.0075	0.1	

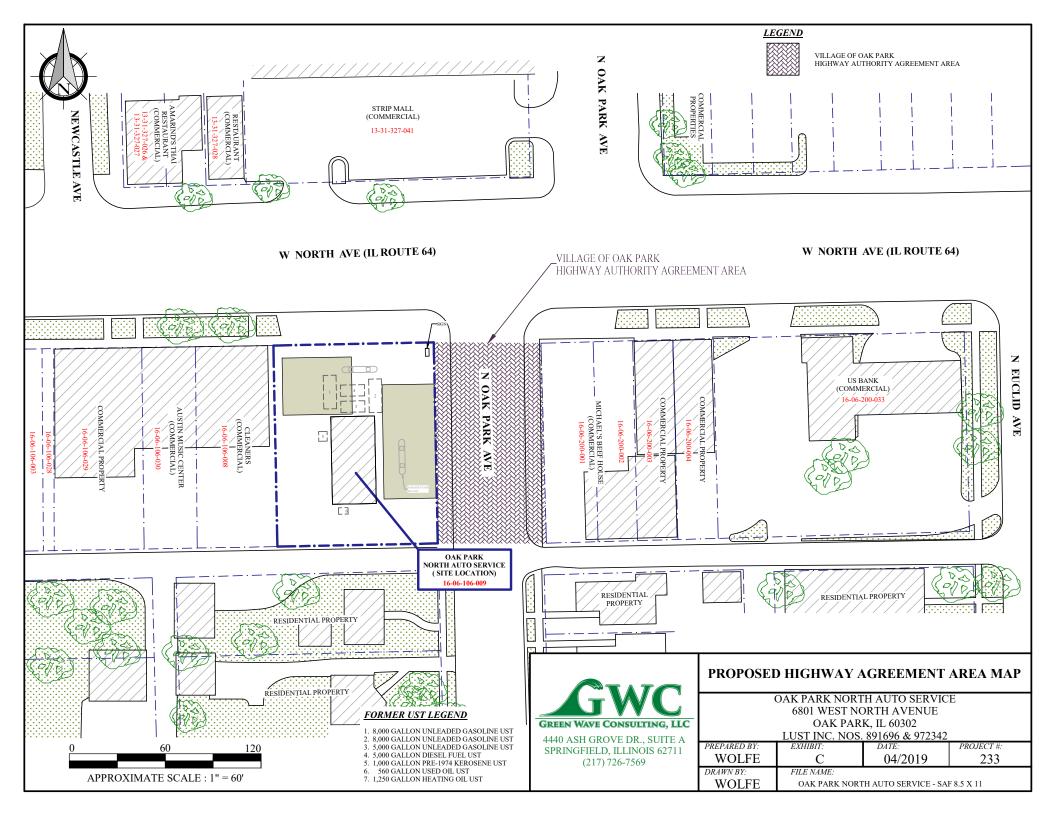
Note: Analytical testing results for lead are expressed in parts-per-million (ppm) concentrations.

EXHIBIT B-2Summary of Analytical Results - Groundwater

				W-7	MV	V-8	MV	W-9	IEPA TACO Tier 1 Groundwater		
Date of Sample Collection:			8/16/2005	10/8/2008	8/16/2005	10/8/2008	8/16/2005	10/8/2008			
Time	of Samp	le Collection:	11:45 AM	11:31 AM	10:00 AM	11:44 AM	10:15 AM	11:57 AM	Remediation Objectives		
Environmental Labor	ratory Sai	mple Number:	5-2534-003	8-4577-007	5-2534-004	8-4577-008	5-2534-005	8-4577-009	Class I	Class II	
Contaminants of Concern:								<u>'</u>		· ·	
BTEX/MTBE Organic Com	pounds (5030B/8260B)									
Date Analyzed:	Units	Rep. Limit	8/22/2005	10/14/2008	8/23/2005	10/14/2008	8/23/2005	10/15/2008			
Benzene	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	13,400	18,100	5.0	25.0	
Toluene	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	346	522	1,000	2,500	
Ethylbenzene	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	2,010	9,870	700	1000	
Total Xylenes	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	7,550	13,200	10,000	10,000	
Polynuclear Aromatic Hydro	ocarbons	(8270C)									
Date Analyzed:	Units	Rep. Limit	8/22/2015	10/14/2008	8/22/2015	10/14/2008	8/22/2005	10/16/2008			
Acenaphthene	ug/L	10	<10	<10	<10	<10	<10	<10	420	2,100	
Acenaphthylene	ug/L	10	<10	<10	<10	<10	<10	<10			
Anthracene	ug/L	5	<5	<5	<5	<5	<5	<5	2,100	10,500	
Benzo(a)anthracene	ug/L	0.13	< 0.13	< 0.13	< 0.13	< 0.13	1.0	< 0.13	0.13	0.65	
Benzo(a)pyrene	ug/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.7	< 0.2	0.20	2.00	
Benzo(b)fluoranthene	ug/L	0.18	< 0.18	< 0.18	< 0.18	< 0.18	0.61	< 0.18	0.18	0.90	
Benzo(k)fluoranthene	ug/L	0.17	< 0.17	< 0.17	< 0.17	< 0.17	0.67	< 0.17	0.17	0.85	
Benzo(ghi)perylene	ug/L	0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4			
Chrysene	ug/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	1.5	7.5	
Dibenzo(a,h)anthracene	ug/L	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.3	1.5	
Fluoranthene	ug/L	2	<2	<2	<2	<2	3.0	<2	280	1,400	
Fluorene	ug/L	2	<2	<2	<2	<2	3.0	<2	280	1,400	
Indeno(1,2,3-cd)pyrene	ug/L	0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.4	< 0.3	0.43	2.15	
Naphthalene	ug/L	10	<10	<10	<10	<10	659	< 500	140	220	
Phenanthrene	ug/L	5	<5	<5	<5	<5	5	<5			
Pyrene	ug/L	2	<2	<2	<2	<2	2	<2	210	1,050	
Metals (3010A/6010B)											
Date Analyzed:	Units	Rep. Limit	8/23/2005	10/10/2008	8/23/2005	10/10/2008	8/23/2005	10/10/2008		1	
Lead	ug/L	10	< 0.002	< 0.002	0.014	< 0.002	0.255	< 0.002	0.0075	0.1	

Note: Analytical testing results for lead are expressed in parts-per-million (ppm) concentrations.

EXHIBIT B-2Summary of Analytical Results - Groundwater


	MW-10		 	 	IEPA TACO				
Date of Sample Collection:			8/16/2005	10/8/2008	 	 	Tier 1 Groundwater Remediation Objectives		
Time	of Samp	ole Collection:	10:30 AM	12:12 PM	 	 	Remediation Objectives		
Environmental Labora	atory Sai	mple Number:	5-2534-006	8-4577-010	 	 	Class I	Class II	
Contaminants of Concern:									
BTEX/MTBE Organic Comp	ounds (:	5030B/8260B))						
Date Analyzed:	Units	Rep. Limit	8/23/2005	10/14/2008	 	 			
Benzene	μg/L	5.0	< 5.0	< 5.0	 	 	5.0	25.0	
Toluene	μg/L	5.0	< 5.0	< 5.0	 	 	1,000	2,500	
Ethylbenzene	μg/L	5.0	< 5.0	< 5.0	 	 	700	1000	
Total Xylenes	μg/L	5.0	< 5.0	< 5.0	 	 	10,000	10,000	
Polynuclear Aromatic Hydro	carbons	(8270C)					•		
Date Analyzed:	Units	Rep. Limit	8/22/2015	10/16/2008	 	 			
Acenaphthene	ug/L	10	<10	<10	 	 	420	2,100	
Acenaphthylene	ug/L	10	<10	<10	 	 			
Anthracene	ug/L	5	<5	<5	 	 	2,100	10,500	
Benzo(a)anthracene	ug/L	0.13	< 0.13	< 0.13	 	 	0.13	0.65	
Benzo(a)pyrene	ug/L	0.2	< 0.2	< 0.2	 	 	0.20	2.00	
Benzo(b)fluoranthene	ug/L	0.18	< 0.18	< 0.18	 	 	0.18	0.90	
Benzo(k)fluoranthene	ug/L	0.17	< 0.17	< 0.17	 	 	0.17	0.85	
Benzo(ghi)perylene	ug/L	0.4	< 0.4	< 0.4	 	 			
Chrysene	ug/L	1.5	<1.5	<1.5	 	 	1.5	7.5	
Dibenzo(a,h)anthracene	ug/L	0.3	< 0.3	< 0.3	 	 	0.3	1.5	
Fluoranthene	ug/L	2	<2	<2	 	 	280	1,400	
Fluorene	ug/L	2	<2	<2	 	 	280	1,400	
Indeno(1,2,3-cd)pyrene	ug/L	0.3	< 0.3	< 0.3	 	 	0.43	2.15	
Naphthalene	ug/L	10	<10	<10	 	 	140	220	
Phenanthrene	ug/L	5	<5	<5	 	 			
Pyrene	ug/L	2	<2	<2	 	 	210	1,050	
Metals (3010A/6010B)									
Date Analyzed:	Units	Rep. Limit	8/23/2005	10/10/2008	 	 			
Lead	ug/L	10	< 0.002	< 0.002	 	 	0.0075	0.1	

Note: Analytical testing results for lead are expressed in parts-per-million (ppm) concentrations.

EXHIBIT C

VILLAGE OF OAK PARK HIGHWAY AUTHORITY AGREEMENT

Oak Park North Auto Service Howard Munyon Property 6801 West North Avenue Oak Park, Illinois

