This document prepared by and return to:

Village Attorney Village of Oak Park Law Department 123 Madison St Oak Park, IL 60302

P.I.N. 16-06-106-009-0000

THE ABOVE SPACE FOR RECORDER'S USE ONLY

LIMITED ENVIRONMENTAL INDEMNITY AGREEMENT

This Limited Environmental Indemnity Agreement (Agreement) is entered into on the ____ day of May, 2019, by and between the Village of Oak Park ("Village") and Howard M. Munyon, Trustee of The Howard M. Munyon Revocable Living Trust, as the Owner or Operator of one or more leaking underground storage tanks (UST) located at 6801 North Avenue, Oak Park, IL ("the Subject Property").

WHEREAS, the Subject Property is legally described in Exhibit D; and

WHEREAS, as a result of one or more releases of contaminants from a underground storage tank ("UST") located on the Subject Property, soil and/or groundwater contamination exists on the Subject Property and in the Village owned Right-of-Way adjacent to the Subject Property which exceeds the Tier 1 residential remediation objectives set forth in 35 Ill. Admin. Code 742 ("the Release"); and

WHEREAS, the Illinois Emergency Management Agency (IEMA) has assigned incident numbers 891696 and 972342 to the Release; and

WHEREAS, Exhibit A is a scaled map prepared by the Owner/Operator showing the site and surrounding area and delineating the current and estimated future extent of soil and groundwater contamination which exceeds the Tier 1 residential remediation objectives under 35 III. Admin. Code Section 742 on the Subject Property and in the Right-of-Way as a result of the Release; and

WHEREAS, Exhibit B is a table prepared by the Owner/Operator that lists each contaminant of concern that exceeds the Tier 1 residential remediation objectives, its Tier 1 residential remediation object and its concentrations within the zone where Tier 1 residential remediation objectives are exceeded; and

WHEREAS, Exhibit C is a scaled map prepared by the Owner/Operator showing the area of the Highway Authority's Right-of-Way that is governed by this Agreement; and

WHEREAS, the Owner/Operator is pursuing corrective action on the Subject Property and in the Village owned Right-of-Way depicted on Exhibit C; and

WHEREAS, under 35 Ill. Admin. Code 742.1020, in lieu of active remediation of the contaminant-impacted soil and/or groundwater, the Owner/Operator desires to use approved risk-based, site-specific remediation objectives in the Right-of-Way; and

WHEREAS, in order to use risk based site-specific remediation objectives, the Owner/Operator has requested that the Village enter into a Highway Authority Agreement in the form prescribed by the Illinois Environmental Protection Agency, attached hereto as $\underline{\text{Exhibit}}$ $\underline{\text{E}}$ ("the HAA"); and

WHEREAS, the Village, in order to protect human health and the surrounding environment from soil, groundwater, and/or other environmental contamination, and as a condition of entering into the HAA, requires certain covenants on the part of the Owner/Operator in exchange for entering into the HAA.

NOW, THEREFORE, the parties agree as follows:

- **1. Recitals.** The above recitals are incorporated herein as if fully set forth.
- 2. Ownership of Subject Property. The Howard M. Munyon Revocable Living Trust, Howard Munyon its authorized agent, by signing this Agreement, represents and warrants it is the current legal owner of the Subject Property and has the authority to record this Agreement on the chain of title for the Subject Property with the Office of the Recorder of Deeds in Cook County, Illinois ("Cook County Recorder of Deeds").
- **3. Ownership of Right-of-Way.** The Village states that it has jurisdiction over the Right-of-Way depicted in Exhibit C ("the Right-of-Way") and that it therefore has control over the soil on or below the Right-of-Way.
- 4. Highway Authority Agreement. This Agreement is intended to supplement the HAA the Owner/Operator has requested from the Village. If the Village does not enter into the HAA, or if the Illinois Environmental Protection Agency ("IEPA") does not issue a No Further Remediation ("NFR") letter for the Subject Property, this Agreement shall be null and void, and the Owner/Operator shall have no remedy against the Village.

- 5. Prohibition Against Use of Groundwater. The Village agrees that it has and will continue to prohibit by ordinance the use of groundwater as required by paragraph 8 of the Highway Authority Agreement. This prohibition is in force by and through Village of Oak Park Ordinance Number 2011-O-107, attached hereto as Exhibit E.
- 6. Maintenance of Engineered Barrier. Paragraph 9 of the HAA and 35 Ill. Adm. Code 742.1020 require the Village to limit access by itself and others to soil that is contaminated above residential Tier 1 remediation objectives from the Release as more particularly stated therein. In order to effectuate the terms of Paragraph 9 and 35 Ill. Adm. Code Section 742.1040, the Village shall only allow access to the contaminated soil and/or groundwater if during and after any access, the public health and the environment are protected. The Village shall require applicants for a work permit in the Right-of-Way in the location described in Exhibit C to obtain a Right-of-Way obstruction permit from the Village and shall notify anyone requesting such a permit in the area depicted in Exhibit C of the existence of the HAA and this Agreement.

7. Disruption of Engineered Barrier in the Right-of-Way.

- a. Village Not Responsible to Maintain Engineered Barrier. Except for the maintenance activities the Village plans for and ordinarily performs on the Right-of-Way, the Village does not agree to maintain the Right-of-Way in a condition sufficient to act as an engineered barrier, nor does it guarantee that the Right-of-Way will continue as a roadway and/or landscaped parkway. Because the HAA allows the pavement in the Right-of-Way to be considered an engineered barrier to the Release, the Owner/Operator shall reimburse the Village for maintenance activities requested by Owner/Operator which are necessary to maintain the pavement as an engineered barrier in furtherance of the terms of the HAA, and which are not otherwise not planned by the Village as part of the Village's ordinary maintenance or planned capital improvement activities.
- **b.** Village Initiated Work in the Public Right-of-Way. Neither the HAA, nor this Agreement shall limit the Village's authority to construct, reconstruct, repair, maintain and/or operate a right-of-way upon the property identified in Exhibit C or to allow others to do the same.

c. Investigation, Prevention and Response to Contaminated Soil and Groundwater.

If the Village or a Village contractor undertakes work on utilities, a municipal project, or while otherwise working in the Right-of-Way in the area described in Exhibit C, the Village will not be responsible for the costs associated with identification, testing, investigation, prevention, response to, remediation, removal, storage, handling, disposal and/or clean up the contaminated soil or groundwater ("Investigation, Response and Corrective Actions") related to the Release. The Owner/Operator shall cooperate with the Village in the Village's Investigation, Response and Corrective Actions and will sign all necessary documents and

manifests for the proper transportation and disposal of such contaminated soil and/or groundwater. In addition, the Village shall not be identified at any time, in any document or manifest as the Owner/ Operator, generator or transporter of contaminated soil or groundwater attributable to the Release.

i. Work by the Village. The Village reserves the right to conduct Investigation, Response and Corrective Actions in the Right-of-Way identified in Exhibit C and to do so as it deems appropriate. The Owner/Operator shall pay the actual costs of these Investigation, Response and Corrective Actions attributable to the Release.

The Owner/Operator shall reimburse the Village or Village Affiliates for the actual incurred costs of Investigation, Response and Corrective Actions. It shall not be a defense for Owner/Operator that those costs were not consistent with or required by Illinois Pollution Control Board, the Illinois Emergency Management Agency, the Illinois Fire Marshall, the IEPA, or the United States Environmental Protection Agency regulations, guidelines or policies, or any other applicable governmental agency or body.

ii. Work by Owner/Operator. The Village may choose to request that the Owner/Operator conduct an Investigation, Response and Corrective Actions necessary for the Village's work in advance of that work. Those activities shall be based upon a site investigation which the Owner/Operator may review or may perform, if requested to do so by the Village and shall be in accordance with all applicable laws and regulations.

The Village shall give the Owner/ Operator ten days' notice prior to incurring any costs associated with an Investigation, Response and Corrective Actions unless there is an emergency or an immediate threat to the health or safety to any individual or to the public. The purpose of the notice is to give the Owner/Operator an opportunity to perform Investigation, Response and Corrective Actions at Owner/Operator's cost to the extent necessary for the Village's work. Any such Investigation, Response and Corrective Actions shall be in accordance with all applicable laws and regulations. However, the Village's failure to give this notice shall not be a violation of this Agreement and failure to give Owner/Operator this opportunity shall not be a defense to a claim by the Village for reimbursement or that the work should not have been done.

iii. Contamination Presumed to Be Caused by Release. For purposes of determining whether contaminated soil and/or groundwater results from or is caused by the Release, there is a rebuttable presumption that the contamination found in the Right-of-Way described in Exhibit C arose from the Release. The Village and the Owner/Operator shall engage in a good faith, collaborative process to give the Owner/Operator an opportunity to rebut the presumption

that the contaminated soil and/or groundwater are not attributable to the Release. In the event that the parties are not able to resolve the question of whether any discovered contamination is attributable to the Release, then such dispute shall be resolved in a court of competent jurisdiction using the same rebuttable presumption that the contamination arose from the Release. The parties further agree that nothing in this Agreement or otherwise will require or obligate the Village to delay, suspend or stop any public works project.

- 8. Release and Waiver of Claims. The Owner/Operator hereby releases the Village and the Village's former, current and future elected and appointed officials, officers, employees, agents, successors and assigns, contractors and other entities using the Right-of-Way under permit from the Village ("Village Affiliates") from any cause of action it may have against them for any violation of the terms of this Agreement, including but not limited to the equitable remedy of specific performance, and agrees not to seek injunctive relief of any sort. Owner/Operator further covenants not to sue the Village and the Village Affiliates and waives all remedies.
- 9. **Indemnification.** The Owner/Operator, on behalf of itself, its successors and assigns, at its sole cost and expense shall indemnify, defend and hold the Village and the Village Affiliates harmless from and against any demand, liability, lawsuit, cause of action, enforcement proceeding, fee, fine or any other source of loss, cost, damages, penalties, fines, injunctions, and expenses including but not limited to attorneys' and experts' fees (collectively, "Liabilities"), resulting or alleged to result from or be caused by the Release and/or arising under or relating to any Investigation, Response and Corrective Actions. The Owner/Operator shall not settle or compromise any such Liabilities without the Village's or Village Affiliates' prior written consent, which consent shall not be unreasonably withheld. The parties are aware of 42 U.S.C. §9607(e), and specifically agree that the Village and the Village Affiliates are not liable for a release or threat of release of the contaminants identified on Exhibit B from the area described in Exhibit C. The Owner/ Operator waives any rights it may otherwise have to assert that such statue does not permit, or renders invalid, the waivers or indemnity provisions contained in this Agreement.
- 10. Owner/Operator to Provide Defense of Claims. The Owner/Operator shall assume the expense of defending all Liabilities to be indemnified under this Agreement. In the event that the Village and/or any of the Village Affiliates is/are named as a defendant(s) or respondents in any proceeding to which they are entitled to be indemnified under this Agreement, the Village and/or any of the Village Affiliates shall have the right to choose the attorney(s) to represent them in that proceeding, and the reasonable costs, expenses and fees associated with said attorney(s) in relation to the defending against the proceeding shall be paid by Owner/Operator pursuant to paragraph 9 above.
- **11. Owner/Operator to Pay Final Judgments.** The Owner/Operator shall pay, promptly upon entry, any non-appealable order, judgment or other final resolution of any claim

or dispute arising out of the matters to be indemnified under this Agreement and shall pay promptly when due any fines, penalties or agreed settlements arising out of the matters to be indemnified under this Agreement.

- 12. Enforcement of this Agreement. If the Owner/Operator fails to indemnify, defend or reimburse the Village for the matters set forth herein, the Village shall have the option to render this Agreement and the associated HAA null and void and immediately terminate this Agreement pursuant to the notice provisions contained in paragraph 20 below. In addition, the Village shall have such other remedies as may be available to the Village by law.
- deliver to the Village any and all records, documents (including writings, drawings, graphs, charges, photographs, and other data compilations from which information can be obtained, translated if necessary into reasonably usable form), or reports of any kind (including all written, printed, recorded or graphic matter however produced or reproduced and all copies, drafts and versions thereof not identical in each respect to the original) which relate to environmental matters and/or conditions associated with the property identified in Exhibit C (including the groundwater thereunder), including but not limited to written reports or a site assessment, environmental audits, soil test reports, water test reports, laboratory analysis and documents, reports or writings relating or referring to the Subject Property and Right-of-Way identified in Exhibit C, provided, however, that nothing in this paragraph shall require the Owner/Operator to deliver to the Village those communications and documents that are encompassed by the attorney-client privilege and/or the attorney work product doctrine.
- 14. Binding Effect. This Limited Environmental Indemnity Agreement ("Agreement") is not binding upon the Village until it is executed by the Village Manager following authorization to do so by Resolution of the President and Board of Trustees of the Village. Prior to execution, this Agreement constitutes an offer by the Owner/Operator. This Agreement is binding on the Owner/Operator, their successors and assigns, upon being signed by the Owner/Operator's authorized representatives.
- 15. Governing Law and Severability. This Agreement has been made and delivered in the State of Illinois and concerns property and laws in the State of Illinois. It shall be construed according to and governed by the internal laws of the State of Illinois without regard to its conflict of law rules. If any provision hereof shall be held invalid, prohibited or unenforceable under any applicable laws of any applicable jurisdiction, such invalidity, prohibition or unenforceability shall be limited to such provision and shall not affect or invalidate the other provisions hereof or affect the validity or enforceability of such provision in any other jurisdiction, and to that extent, the provisions hereof are severable. Whenever possible, each provision of this Agreement shall be interpreted in such a manner as to be effective and valid under applicable law.

- 16. Non-Waiver. Failure of the Village to require performance of any provision of this Agreement shall not affect the Village's right to require full performance thereof at any time thereafter, and the waiver by the Village of a breach of any provision of this Agreement shall not constitute or be deemed to be a waiver of a similar breach in the future, or any other breach, or nullify the effectiveness of such provisions of this Agreement. The rights and remedies of the Village of this Agreement are cumulative. The exercise or use of any one or more thereof shall not bar the Village from the exercise or use of any right or remedy provided herein or otherwise provided by law, nor shall the exercise or use of any right or remedy by the Village waive any other right or remedy.
- Indemnity Agreement. The Owner/Operator shall record this Limited Environmental Indemnity Agreement including all attachments in the office of the Cook County Recorder of Deeds together with the HAA and all their respective attachments. Upon recordation thereof, the covenants, conditions and requirements in this Agreement shall be binding upon the current Owner/Operator, occupants, and all heirs, successors, assigns, and lessees and shall be deemed covenants which shall run with the land in perpetuity or until terminated by a Release signed by the Village Manager following authorization to do so by Resolution of the President and Board of Trustees of the Village and recorded with the Cook County Recorder of Deeds. The Owner/Operator specifically represents and warrants that it is the legal titleholder of the Subject Property and that title to the Subject Property will not be transferred to any other persons or entity until this Limited Environmental Indemnity Agreement has been first recorded with the Cook County Recorder of Deeds.
- Lien on Subject Property. 18. This Limited Environmental Indemnity Agreement shall constitute a lien on the Subject Property for the payment of all sums due the Village under the terms hereof as well as for the performance of all other covenants, conditions and obligations required of the Owner/Operator. In the event the Owner/Operator or any subsequent Owner/Operator of the Subject Property fails to pay the amounts owed to the Village under this Agreement in its entirety or fails to meet its other covenants, conditions and obligations hereunder, any such unpaid amount or expenses incurred by the Village shall accrue interest at the rate of nine percent (9%) annually until paid, and the Village shall be entitled to foreclose this lien against the Subject Property, for said unpaid amount in the same manner as provided by law for the foreclosure of mortgages. The lien created pursuant to this Agreement shall be superior to any subsequent liens or encumbrances which may attach to the Subject Property, except real estate taxes, and the lien of any future mortgage, encumbrance or evidence of indebtedness shall be subject and subordinate to the lien created pursuant to this Agreement. The Village shall be entitled to all fees (including reasonable attorney's fees) and expenses incurred in connection with recording such a lien and foreclosing on the same. In the event of a default in any payment to the Village, in addition to the remedy of foreclosure of this lien, the Village shall have all other rights and remedies against the Owner/Operator or any subsequent Owner/Operator of the Subject

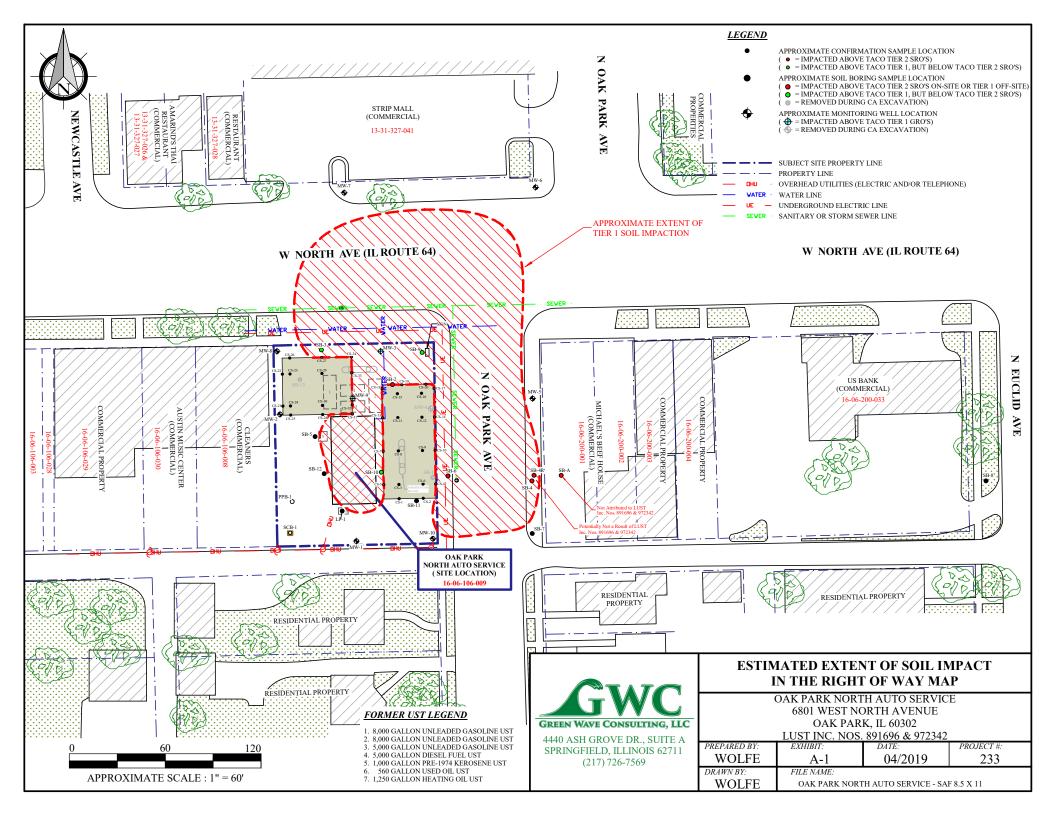
Property for the collection of said monies. The payment of the sums of money to be paid hereunder shall be the obligation of the Owner/Operator and any successors in title to the Subject Property, and no conveyance of the Subject Property shall relieve the Owner/Operator, or any subsequent owner/operator, of said obligation.

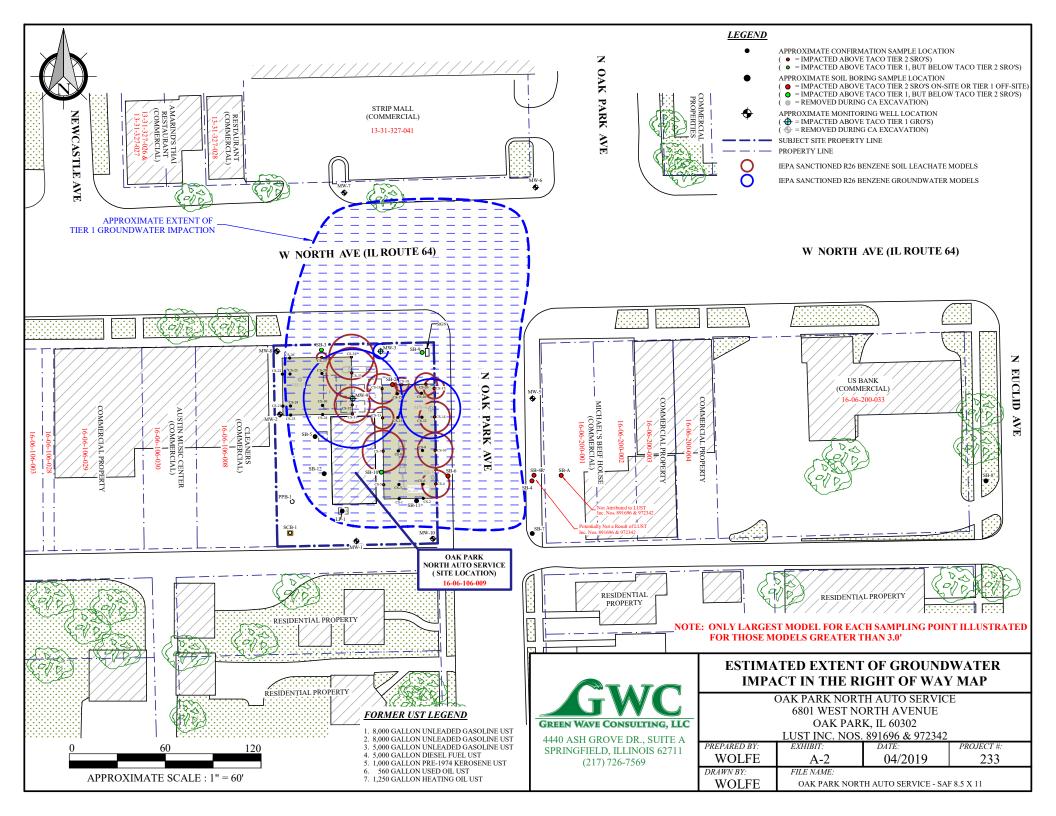
- **19. Amendments.** This Agreement may not be amended, modified, revised, supplemented or restated except by a writing signed by each of the parties hereto. In construing this Agreement or determining the rights of the parties hereunder, no party shall be deemed to have drafted or created this Agreement or any portion thereof.
- 20. Notices. Any notice required or permitted to be given to either party shall be deemed to be received by such party (i) three days after deposit in the U.S. Mail by certified mail, return receipt requested, or (ii) one business day after deposit with a nationally recognized overnight delivery service guaranteeing next business day delivery, or (iii) upon personal delivery to the Party to whom addressed provided that a receipt of such delivery is obtained, or (iv) on the same business day as transmitted and confirmed by a return receipt. Written notice and other communications relating to this agreement directed to the Village shall be sent to:

Village Engineer Village of Oak Park 201 South Boulevard Oak Park, IL 60302

With a copy to: Village Attorney Village of Oak Park 123 Madison Street Oak Park, IL 60302

Written notice directed to the Owner/Operator shall be sent to the individual listed with the Cook County Treasurer as the recipient of property tax bills on the Subject Property.


21. Execution of Agreement by Owner/Operator. The Owner/Operator represents that it has read this Agreement and by signing this Agreement, acknowledges that it understands all the words, intentions and provisions of this Agreement, as well as the rights, duties, obligations and limitations of the same as provided for herein. The Owner/Operator further represents that it understands that this is a legal document and that it has had an opportunity to have an attorney review the document before signing it. The executing representatives of the parties to this Agreement represent and certify that they are fully authorized to enter into the terms and conditions of this Agreement and to execute and legally bind that party to it.


- **22. Captions and Paragraph Headings.** Captions and paragraph headings are for convenience only and shall not be used in construing this Agreement.
- **23. Effective Date.** This Agreement shall not be effective until the IEPA issues a NFR letter for this Release and the Agreement is executed by the Village Manager of the Village of Oak Park.

[REMAINDER OF PAGE INTENTIONALLY LEFT BLANK – SIGNATURE PAGE FOLLOWS]

IN WITNESS WHEREOF, the President and Board of Trustees Village of Oak Park have authorized and caused this Agreement to be signed by its Village Manager.

	Date:
Cara Pavlicek	
Village Manager	
Cara Pavlicek, personally known to me to be	
the Village Manager of the Village of Oak	
Park, appeared before me thisday of, 2019 and signed	
this Agreement pursuant to authority given	
by the President and Board of Trustees of	
the Village of Oak Park as the free and	
voluntary act of the Village of Oak Park for	
the uses and purposes herein set forth.	
	- Notary Seal -
Notary Public	
,	
IN WITNESS WHEREOF , Owner/Operator duly authorized representative.	has caused this Agreement to be signed by its
BY:	Date:
Howard M. Munyon	
,	
Howard M. Munyon, personally known to	
me to be the Trustee of The Howard M.	
Munyon Revocable Living Trust appeared	
la a C a a a a a a l la ^a a a l la a a C	
before me thisday of	
,2019 and signed this	
,2019 and signed this Agreement pursuant to legal authority as	
,2019 and signed this Agreement pursuant to legal authority as his/her free and voluntary act for the uses	
,2019 and signed this Agreement pursuant to legal authority as	
,2019 and signed this Agreement pursuant to legal authority as his/her free and voluntary act for the uses	- Notary Seal -
,2019 and signed this Agreement pursuant to legal authority as his/her free and voluntary act for the uses	- Notary Seal -

	ample Collection ample Collection Sample Numb		7/13/2004 AM	7/13/2004	7/14/2004	7/14/2004		Soil Comp	. 0.1							
Environmental Laborator		n: AM	AM			7/14/2004	7/14/2004	Groundwat	er Ingestion Pathway		Ingestion Exposure Pathway	7	1	Inhalation Exposure Pathway	,	Metropolitan Statistical Area
	Sample Numb			AM	AM	AM	AM	Class I	Class II	lential	Industrial/ Commercial	onstruction Worker	lential	IndustriaV Commercial	Worker	Background Concentration
Ct		er: 31729	31730	31731	31732	31733	31734	Class I	Class II	Resid	Indu	Constr Wo	Resid	Indu	Constr Wo	
		•	•			•	•									
BTEX Organic Compounds (5035A/	8260B)															
Date Analyzed: Ur	its Rep. Limi	7/21/2004	7/21/2004	7/21/2004	7/21/2004	7/21/2004	7/21/2004									
Benzene µg	kg Varies**	<2.0	24.8	11,000	<2.0	664	6,190	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Toluene μg	kg Varies**	< 5.0	5.7	32,600	< 5.0	73.8	24,900	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Ethylbenzene µg	kg Varies**	< 5.0	< 5.0	22,000	< 5.0	10,700	17,600	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Total Xylenes μg	kg Varies**	< 5.0	6.3	77,000	< 5.0	32,100	62,600	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Polynuclear Aromatic Hydrocarbon	s (8270C)	•														
Date Analyzed: Ur	its Rep. Limi	7/20/2004	7/22/2004	7/20/2004	7/20/2004	7/20/2004	7/20/2004									
Acenaphthene µg	kg Varies**	< 50	< 50	< 50	< 50	117	56	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Acenaphthylene µg	kg Varies**	<50	<50	<50	<50	< 50	< 50									70
Anthracene µg	kg Varies**	< 50	< 50	< 50	< 50	58	< 50	12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(a)anthracene µg	kg Varies**	<8.7	<8.7	12	<8.7	37	30	2,000	8,000	900*	8,000	170,000				1,800*
Benzo(a)pyrene µg	kg Varies**	<15	<15	<15	<15	31	19	8,000	82,000	90*	800*	17,000				2,100*
Benzo(b)fluoranthene μg	kg Varies**	<11	<11	<11	<11	30	18	5,000	25,000	900*	8,000	170,000				2,100*
Benzo(k)fluoranthene μg	kg Varies**	<11	<11	<11	<11	21	19	49,000	250,000	9,000	78,000	1,700,000				1,700
Benzo(ghi)perylene μg	kg Varies**	< 50	< 50	< 50	< 50	< 50	< 50			_		-				1,700
Chrysene µg	kg Varies**	< 50	< 50	< 50	< 50	56	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Dibenzo(a,h)anthracene μg	kg Varies**	<20	<20	<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
Fluoranthene µg	kg Varies**	< 50	< 50	50	< 50	105	115	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Fluorene µg	kg Varies**	< 50	< 50	52	< 50	222	94	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Indeno(1,2,3-cd)pyrene μg	kg Varies**	<29	<29	<29	<29	<29	<29	14,000	69,000	900*	8,000	170,000				1,600*
Naphthalene μg	kg Varies**	<25	<25	8,620	<25	10,400	5,700	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Phenanthrene µg	kg Varies**	< 50	< 50	121	< 50	304	190									2,500
Pyrene µg	kg Varies**	<50	< 50	< 50	< 50	123	97	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Metals (6010B)																
Date Analyzed: Un	its Rep. Limi	7/21/2004	7/21/2004	7/21/2004	7/21/2004	7/21/2004	7/21/2004		•	•	•	•	•	•	•	
Total Lead mg	/kg 0.2	9.5	8.6	19.4	10.2	24.6	11.6	107***	1,420***	400	800	700				36
TCLP Metals Method 1311 (6010B)																
	its Rep. Limi		7/21/2004	7/21/2004	7/21/2004	7/21/2004	7/21/2004									
TCLP Metals m	/L 0.002	< 0.002	< 0.002	0.002	< 0.002	0.008	0.003	0.0075	0.1							
Solids, Total (2540B)																
Date Analyzed: Un	its Rep. Limi															
Total Solids	6	78.42	82.27	79.04	81.13	81.48	81.70									

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

			SB-2 (12'-14')	SB-3 (4'-6')	SB-3 (12'-14')	LP-1	SB-4 (3'-5')	SB-4 (15-'16')				IEPA TA Soil Remediat	CO Tier 1 ion Objectives				
	Date of Samp	ple Collection:	7/14/2004	7/14/2004	7/14/2004	7/14/2004	8/8/2005	8/8/2005	Groundwa	onent of the ter Ingestion e Pathway		Ingestion Exposure Pathway	7		Inhalation Exposure Pathway	y	Metropolitan Statistical Area
	Time of Sam	ple Collection:	AM	AM	AM	AM	7:45 AM	7:45 AM	Class I	Class II	lential	Industria <i>l</i> Commercial	onstruction Worker	lential	Industrial/ Commercial	Worker	Background Concentration
Environmental	Laboratory Sa	mple Number:	31735	31736	31737	31738	5-2396-001	5-2396-002		C.M.S.J 11	Resic	Indu	Const Wo	Resi	Indu	Const	
Contaminants of Concern:			•	•		•	•	•			,						,
BTEX Organic Compoun	ds (5035A/826	60B)															
Date Analyzed:	Units	Rep. Limit	7/21/2004	7/21/2004	7/21/2004	7/22/2004	8/12/2005	8/12/2005									
Benzene	μg/kg	Varies**	19.2	1,530	<2.0	< 5.0	194	<2.0	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Toluene	μg/kg	Varies**	37.4	5,290	< 5.0	< 5.0	<50.0	< 5.0	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Ethylbenzene	μg/kg	Varies**	31.4	12,200	< 5.0	< 5.0	4,770	< 5.0	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Total Xylenes	μg/kg		271	48,400	<5.0	<5.0	1,750	<5.0	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Polynuclear Aromatic Hy	drocarbons (8	270C)		, , , , , , , , , , , , , , , , , , , ,	•			'						•			I .
Date Analyzed:	Units	Rep. Limit	7/20/2004	7/27/2004	7/27/2004	7/20/2004	8/11/2005	8/11/2005									
Acenaphthene	ug/kg	Varies**	<50	<50	<50	<50	<50	<50	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Acenaphthylene	ug/kg		<50	<50	<50	<50	<50	<50									70
Anthracene	μg/kg		<50	<50	<50	<50	<50	<50	12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(a)anthracene	μg/kg	Varies**	<8.7	30	<8.7	<8.7	<8.7	<8.7	2,000	8,000	900*	8,000	170,000				1.800*
Benzo(a)pyrene	μg/kg	Varies**	<15	26	<15	<15	<15	<15	8,000	82,000	90*	800*	17,000				2,100*
Benzo(b)fluoranthene	ug/kg		<11	23	<11	<11	<11	<11	5,000	25,000	900*	8,000	170,000				2,100*
Benzo(k)fluoranthene	μg/kg	Varies**	<11	22	<11	<11	<11	<11	49,000	250,000	9,000	78,000	1,700,000				1,700
Benzo(ghi)perylene	μg/kg	Varies**	<50	<50	<50	<50	<50	<50									1,700
Chrysene	μg/kg	Varies**	<50	<50	< 50	<50	<50	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Dibenzo(a,h)anthracene	μg/kg	Varies**	<20	<20	<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
Fluoranthene	μg/kg	Varies**	<50	68	< 50	<50	< 50	< 50	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Fluorene	μg/kg	Varies**	<50	100	<50	<50	<50	<50	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29	<29	<29	<29	<29	<29	14,000	69,000	900*	8,000	170,000				1,600*
Naphthalene	μg/kg	Varies**	121	5,400	35	<25	941	<25	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Phenanthrene	μg/kg	Varies**	< 50	153	< 50	< 50	< 50	< 50									2,500
Pyrene	μg/kg	Varies**	< 50	82	< 50	< 50	< 50	< 50	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Metals (6010B)		•	•	•			•				· · · · ·						·
Date Analyzed:	Units	Rep. Limit	7/21/2004	7/21/2004	7/21/2004		8/13/2005	8/13/2005									
Total Lead	mg/kg	0.2	17.6	15.0	17.9		13.4	15.8	107***	1,420***	400	800	700				36
TCLP Metals Method 131	1 (6010B)																
Date Analyzed:	Units	Rep. Limit	7/21/2004	7/21/2004	7/21/2004	7/21/2004	8/13/2005	8/13/2005									
TCLP Metals	ml/L	0.002	< 0.002	0.004	< 0.002	< 0.002	0.025	0.021	0.0075	0.1							
Solids, Total (2540B)	-										· · · · ·						·
Date Analyzed:	Units	Rep. Limit					8/9/2005	8/9/2005									
Total Solids	%		78.23	80.00	79.89	81.29	81.23	87.83									
* P 25 IA C 742 4150			/ 6.23				01.23		EDA TAGO Ti 1								

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO

the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

Date of Sample Collection: 8/8/2005 8/8/2005 8/8/2005 8/9				MW-5 (3'-5')	MW-6 (5'-7')	MW-7 (5'-7')	MW-8 (7'-9')	MW-8 (15'-16')	MW-9 (3'-5')				IEPA TA					
Time of Sample Collection 9,00 AM 11,00 AM 12,30 PM 7,45 AM 8,15 AM Class Class Class T T T T T T T T T		Date of Samp	ple Collection:		` ′	` ′				Groundwa	ter Ingestion		Ingestion	J			,	Metropolitan Statistical
Contaminants of Concern: ### FTEX Organic Compounds (805A-8268) ### Date Analyzer: ### Units Rep. Limit \$117085		Time of Sam	ple Collection:	9:00 AM	11:00 AM	12:30 PM	7:45 AM	7:45 AM	8:15 AM	Class I	Class II	lential	strial/ nercial	ruction rker	lential	strial/ nercial	ruction	Background Concentration
## DECAMBRYCONDOMENS (5095ANS2669) Decamporation Page	Environmental	Laboratory Sa	mple Number:	5-2396-003	5-2396-004	5-2396-005	5-2422-001	5-2422-002	5-2422-003	Class I	Class II	Resid	Indu	Const Wo	Resic	Indu	Const	
Date Analyzed: Units Rep. Limit St2008 \$12,008 \$12,008 \$17,009 \$17,009	Contaminants of Concern:			•	•	•	•	•	•			,						"
February Personan Page Parises* \$2.0 \$2	BTEX Organic Compoun	ds (5035A/826	0B)															
Total Xylens	Date Analyzed:	Units	Rep. Limit	8/12/2005	8/12/2005	8/12/2005	8/17/2005	8/17/2005	8/17/2005									
Ethylbenzer mg/kg Varies** < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5	Benzene	μg/kg	Varies**	<2.0	<2.0	< 2.0	<2.0	<2.0	2,940	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Total Xylenes pg/kg Varies** <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Toluene	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Polymechar Aromatic Hydrocarbons (R27GC) Date Analyzed; Units Rep. Limit N1/2005 N1/	Ethylbenzene	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	13,400	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Date Analyzed: Units Rep. Limit Stripung Stri	Total Xylenes	μg/kg	Varies**	<5.0	< 5.0	< 5.0	<5.0	< 5.0	12,700	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Accesphthene Ig/Eg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Polynuclear Aromatic Hy	drocarbons (8	270C)		•	•		•			· · · · · ·							
Accomplish/lene Igg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <5	Date Analyzed:	Units	Rep. Limit	8/11/2005	8/11/2005	8/11/2005	8/12/2005	8/12/2005	8/12/2005									
Accessplithylene Igg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <	Acenaphthene	uø/kø	Varies**	<50	<50	<50	<50	<50	99	570,000	2.900.000	4.700.000	120.000.000	120.000.000				130
Anthracene μg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <		ug/kg	Varies**	<50	<50	<50	<50	<50	<50									70
Benzo(a)anthracene	_									12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				
Benzo(a)pyrene µg/kg Varies** <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15				<8.7	<8.7	<8.7	<8.7	<8.7	41.0	2,000	8,000	900*	8,000	170,000				1.800*
Benzo(k)fluoranthene µg/kg Varies** <11 <11 <11 <11 <11 <11 <11 33 49,000 250,000 9,000 78,000 1,700,000 1,700 1,700,000 1,700,000 1,700 1,700,000 1,700,000 1,700 1,700,000 1,700,000 1,700 1,700,000 1,700,000 1,700 1,700,000 1,700,000 1,700 1,700,000 1,700,000 1,700,000 1,700 1,700,000		μg/kg	Varies**	<15	<15	<15	<15	<15	37	8,000	82,000	90*	800*	17,000				2,100*
Benzo(ghi)perylene μg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Benzo(b)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	<11	37	5,000	25,000	900*	8,000	170,000				2,100*
Chrysene	Benzo(k)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	<11	33	49,000	250,000	9,000	78,000	1,700,000				1,700
Dibenzo(a,h)anthracene \(\mu_g / \kg \) Varies** \(\lambda \) \(\sigma \) \(\lambda \) \(\l	Benzo(ghi)perylene	μg/kg	Varies**	<50	< 50	< 50	< 50	< 50	< 50									1,700
Fluoranthene pg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Chrysene	μg/kg	Varies**	< 50	< 50	< 50	<50	< 50	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Fluorene µg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Dibenzo(a,h)anthracene	μg/kg	Varies**	<20	<20	<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fluoranthene	μg/kg	Varies**	< 50	< 50	< 50	<50	< 50	105	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Naphthalene	Fluorene	μg/kg	Varies**	< 50	< 50	< 50	<50	< 50	126	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Phenanthrene	Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29	<29	<29	<29	<29	<29	14,000	69,000	900*	8,000	170,000				1,600*
Pyrene μg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Naphthalene	μg/kg	Varies**	<25	<25	<25	<25	<25	4,540	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Total Metals (6010B) Total Metals Method 1311 (6010B) Total Metals Met	Phenanthrene	μg/kg	Varies**		<50	<50	<50	<50	268									2,500
Date Analyzed: Units Rep. Limit 8/13/2005 8/	Pyrene	μg/kg	Varies**	< 50	<50	<50	< 50	< 50	109	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Lead mg/kg 0.2 19.0 10.9 16.3 12.1 15.4 17.8 107*** 1,420*** 400 800 700 36 TCLP Metals Method 1311 (6010B) Date Analyzed: Units Rep. Limit 8/13/2005 8/13/2005 8/13/2005 8/15/2	Total Metals (6010B)																	
TCLP Metals Method 1311 (601 0B)	Date Analyzed:	Units	Rep. Limit	8/13/2005	8/13/2005	8/13/2005	8/13/2005	8/13/2005	8/13/2005			•	•	•		•		
Date Analyzed: Units Rep. Limit 8/13/2005 8/13/2005 8/13/2005 8/15/2005	Total Lead	mg/kg	0.2	19.0	10.9	16.3	12.1	15.4	17.8	107***	1,420***	400	800	700				36
TCLP Metals ml/L 0.002 0.020 0.008 0.003 <0.002 <0.002 <0.002 0.0075 0.1 Solids, Total (2540B)	TCLP Metals Method 131	1 (6010B)																
Solids, Total (2540B)		Units	Rep. Limit	8/13/2005	8/13/2005	8/13/2005	8/15/2005	8/15/2005	8/15/2005									
		ml/L	0.002	0.020	0.008	0.003	< 0.002	< 0.002	< 0.002	0.0075	0.1							
Date Analyzed: Units Rep. Limit 8/9/2005 8/9/2005 8/9/2005 8/11/2005 8/11/2005 8/11/2005 8/11/2005	Solids, Total (2540B)																	
	Date Analyzed:	Units	Rep. Limit	8/9/2005	8/9/2005	8/9/2005	8/11/2005	8/11/2005										
Total Solids % 80.90 83.84 82.77 81.95 81.31 77.32	Total Solids	%		80.90	83.84	82.77	81.95	81.31	77.32									

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

			MW-9 (15'-16')	SB-5 (5'-7')	SB-5 (15'-16')	MW-10 (7'-9')	MW-10 (15'-16')	SB-6 (8'-10')				IEPA TA Soil Remediat	CO Tier 1 tion Objectives				
Date	e of Sam	ple Collection:	8/9/2005	8/9/2005	8/9/2005	8/9/2005	8/9/2005	1/5/2006	Groundwa	onent of the ter Ingestion e Pathway		Ingestion Exposure Pathway	y		Inhalation Exposure Pathway	,	Metropolitan Statistical Area
Time	e of Sam	ple Collection:	8:15 AM	9:00 AM	9:00 AM	9:45 AM	9:45 AM	8:25 AM	Class I	Class II	sidential	Industrial/ Commercial	onstruction Worker	dential	Industrial/ Commercial	ruction	Background Concentration
Environmental Labor	ratory Sa	mple Number	5-2422-004	5-2422-005	5-2422-006	5-2422-007	5-2422-008	6-0137-001			Resi	Indt	Const	Resi	Indt	Const Wo	
Contaminants of Concern:			•	•	•		•	•			,						
BTEX Organic Compounds (50	35A/826	0B)															
Date Analyzed:	Units	Rep. Limit	8/18/2005	8/17/2005	8/17/2005	8/17/2005	8/17/2005	1/10/2006									
Benzene	μg/kg	Varies**	79.5	<2.0	< 2.0	<2.0	<2.0	3,910	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Toluene	μg/kg	Varies**	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0	1,440	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Ethylbenzene	μg/kg	Varies**	89.9	< 5.0	< 5.0	< 5.0	< 5.0	5,740	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Total Xylenes	μg/kg	Varies**	427	< 5.0	< 5.0	< 5.0	< 5.0	14,700	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Polynuclear Aromatic Hydroca	rbons (8	270C)									•						
Date Analyzed:	Units	Rep. Limit	8/12/2005	8/12/2005	8/12/2005	8/12/2005	8/12/2005										
Acenaphthene	μg/kg	Varies**	77	<50	< 50	< 50	< 50		570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Acenaphthylene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50										70
Anthracene	μg/kg	Varies**	257	< 50	< 50	< 50	< 50		12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(a)anthracene	μg/kg	Varies**	230	15.0	<8.7	<8.7	<8.7		2,000	8,000	900*	8,000	170,000				1,800*
Benzo(a)pyrene	μg/kg	Varies**	183	16	<15	<15	<15		8,000	82,000	90*	800*	17,000				2,100*
Benzo(b)fluoranthene	μg/kg	Varies**	192	18	<11	<11	<11		5,000	25,000	900*	8,000	170,000				2,100*
Benzo(k)fluoranthene	μg/kg	Varies**	125	<11	<11	<11	<11		49,000	250,000	9,000	78,000	1,700,000				1,700
Benzo(ghi)perylene	μg/kg	Varies**	88	< 50	< 50	< 50	< 50										1,700
Chrysene	μg/kg	Varies**	261	< 50	< 50	< 50	< 50		160,000	800,000	88,000	780,000	17,000,000			-	2,700
Dibenzo(a,h)anthracene	μg/kg	Varies**	33	<20	<20	<20	<20		2,000	7,600	90*	800	17,000				420*
Fluoranthene	μg/kg	Varies**	590	< 50	< 50	< 50	< 50		4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Fluorene	μg/kg	Varies**	98	< 50	< 50	< 50	< 50		560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	95	<29	<29	<29	<29		14,000	69,000	900*	8,000	170,000				1,600*
Naphthalene	μg/kg	Varies**	63	<25	<25	<25	<25		12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Phenanthrene	μg/kg		480	< 50	< 50	< 50	< 50										2,500
Pyrene	μg/kg	Varies**	50	< 50	< 50	< 50	< 50		4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Metals (6010B)																	
Date Analyzed:	Units	Rep. Limit	8/13/2005	8/13/2005	8/13/2005	8/13/2005	8/13/2005	1/12/2006									
Total Lead	mg/kg	0.2	11.3	18.9	12.5	10.2	12.4	10.9	107***	1,420***	400	800	700				36
TCLP Metals Method 1311 (60)																	
Date Analyzed:	Units	Rep. Limit	8/15/2005	8/15/2005	8/15/2005	8/15/2005	8/15/2005	1/13/2006									
TCLP Metals	ml/L	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.0075	0.1							
Solids, Total (2540B)														•			
Date Analyzed:	Units	Rep. Limit	8/11/2005	8/11/2005	8/11/2005	8/11/2005	8/11/2005	1/6/2006									_
Total Solids	%		80.27	79.00	79.69	83.18	81.53	78.88									
* P			l ll		- (idi - M-t			T	EDA TACO Tim 1								

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO

the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H. **Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

			SB-7 (4'-5')	SB-8 (6'-8')	SB-9 (4'-6')	SB-10 (12'-13')	SB-10 (13'-15')	SB-11 (13'-15')					CO Tier 1 tion Objectives				
	Date of Samp	ole Collection:	1/5/2006	1/5/2006	8/20/2008	8/20/2008	8/20/2008	8/20/2008	Groundwa	onent of the ter Ingestion e Pathway		Ingestion Exposure Pathway	-		Inhalation Exposure Pathway	,	Metropolitan Statistical Area
	Time of Sam	ple Collection:	9:08 AM	10:14 AM	8:26 AM	9:05 AM	9:09 AM	10:10 AM	Class I	Class II	lential	Industria// Commercial	onstruction Worker	lential	Industrial/ Commercial	Worker	Background Concentration
Environmental I	Laboratory Sa	mple Number:	6-0137-002	6-0137-003	8-3817-001	8-3817-002	8-3817-003	8-3817-004	Class I	Class II	Resid	Indu	Const Wo	Resid	Indu	Const Wo	
Contaminants of Concern:					•					•		•	•				
BTEX Organic Compounds	ls (5035A/826	0B)															
Date Analyzed:	Units	Rep. Limit	1/10/2006	1/10/2006	8/22/2008	8/25/2008	8/22/2008	8/22/2008									
Benzene	μg/kg	Varies**	<2.0	<2.0	891	4,960	110	< 5.0	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Toluene	μg/kg	Varies**	< 5.0	< 5.0	< 500	19,100	10.3	< 5.0	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Ethylbenzene	μg/kg	Varies**	< 5.0	< 5.0	4,690	79,800	< 5.0	< 5.0	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Total Xylenes	μg/kg	Varies**	< 5.0	< 5.0	3,390	274,000	< 5.0	< 5.0	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Polynuclear Aromatic Hydr	rocarbons (8	270C)	•	•	•		•	•									
Date Analyzed:	Units	Rep. Limit			8/27/2008	8/27/2008	8/27/2008	8/27/2008									
Acenaphthene	μg/kg	Varies**			<50	<50	<50	<50	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Acenaphthylene	μg/kg	Varies**			<50	<50	<50	<50									70
Anthracene	μg/kg	Varies**			< 50	< 50	< 50	< 50	12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(a)anthracene	μg/kg	Varies**			<8.7	<8.7	<8.7	<8.7	2,000	8,000	900*	8,000	170,000				1,800*
Benzo(a)pyrene	μg/kg	Varies**			<15	<15	<15	<15	8,000	82,000	90*	800*	17,000				2,100*
Benzo(b)fluoranthene	μg/kg	Varies**			<11	<11	<11	<11	5,000	25,000	900*	8,000	170,000				2,100*
Benzo(k)fluoranthene	μg/kg	Varies**			<11	<11	<11	<11	49,000	250,000	9,000	78,000	1,700,000		-		1,700
Benzo(ghi)perylene	μg/kg	Varies**			< 50	< 50	< 50	< 50									1,700
Chrysene	μg/kg	Varies**			< 50	< 50	< 50	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Dibenzo(a,h)anthracene	μg/kg	Varies**			<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
Fluoranthene	μg/kg	Varies**			< 50	< 50	< 50	< 50	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Fluorene	μg/kg	Varies**			< 50	< 50	< 50	< 50	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Indeno(1,2,3-cd)pyrene	μg/kg	Varies**			<29	<29	<29	<29	14,000	69,000	900*	8,000	170,000				1,600*
Naphthalene	μg/kg	Varies**			1,130	2,370	<25	<25	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Phenanthrene	μg/kg	Varies**			<50	57	<50	< 50									2,500
Pyrene	μg/kg	Varies**			< 50	< 50	< 50	< 50	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Metals (6010B)																	
Date Analyzed:		Rep. Limit	1/12/2006	1/12/2006													
Total Lead	mg/kg	0.2	10.7	9.1					107***	1,420***	400	800	700				36
TCLP Metals Method 1311										-	-			-	-		
Date Analyzed:		Rep. Limit	1/13/2006	1/13/2006	8/26/2008	8/26/2008	8/26/2008	8/26/2008			0						0-
TCLP Metals	ml/L	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.0075	0.1							
Solids, Total (2540B)			1					,									
Date Analyzed:	Units	Rep. Limit	1/6/2006	1/6/2006	8/21/2008	8/21/2008	8/21/2008	8/21/2008			1						1
Total Solids	%		81.18	82.05	81.00	83.17	83.36	81.88									

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO

the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

			SB-12 (13'-15')	SB-13 (4'-6')	SB-13 (12'-16')	CS-1	CS-2	CS-3				IEPA TA Soil Remediat	CO Tier 1 tion Objectives				
Date	e of Sam	ple Collection:	8/20/2008	8/20/2008	8/20/2008	5/7/2012	5/7/2012	5/7/2012	Groundwa	onent of the ter Ingestion e Pathway		Ingestion Exposure Pathway	y		Inhalation Exposure Pathway	y	Metropolitan Statistical Area
Time	e of Sam	ple Collection:	10:54 AM	11:46 AM	11:55 AM	9:12 AM	9:24 AM	9:45 AM	Class I	Class II	sidential	Industrial/ Commercial	onstruction Worker	dential	Industrial/ Commercial	ruction rrker	Background Concentration
Environmental Labor	ratory Sa	mple Number	8-3817-005	8-3817-006	8-3817-007	12-2123-001	12-2123-002	12-2123-003			Resi	Indt	Const	Resi	Indi	Const	
Contaminants of Concern:				•	•	•	•	'		•	ll-	•	•		•	•	l .
BTEX Organic Compounds (50	35A/826	60B)															
Date Analyzed:	Units	Rep. Limit	8/22/2008	8/22/2008	8/22/2008	5/14/2012	5/14/2012	5/14/2012									
Benzene	μg/kg	Varies**	< 5.0	597	< 5.0	< 5.0	< 5.0	< 5.0	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Toluene	μg/kg	Varies**	< 5.0	< 500	< 5.0	< 5.0	< 5.0	< 5.0	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Ethylbenzene	μg/kg	Varies**	< 5.0	3,090	< 5.0	< 5.0	< 5.0	< 5.0	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Total Xylenes	μg/kg	Varies**	< 5.0	338	< 5.0	< 5.0	< 5.0	< 5.0	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Polynuclear Aromatic Hydroca	rbons (8	270C)															
Date Analyzed:	Units	Rep. Limit	8/27/2008	8/27/2008	8/27/2008	5/15/2012	5/15/2012	5/15/2012									
Acenaphthene	μg/kg	Varies**	<50	195	< 50	<50	<50	<50	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Acenaphthylene	μg/kg	Varies**	<50	72	<50	<50	<50	<50									70
Anthracene	μg/kg		<50	199	<50	<50	<50	<50	12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(a)anthracene	μg/kg	Varies**	<8.7	171	< 8.7	<8.7	<8.7	<8.7	2,000	8,000	900*	8,000	170,000				1,800*
Benzo(a)pyrene	μg/kg		<15	139	<15	<15	<15	<15	8,000	82,000	90*	800*	17,000				2,100*
Benzo(b)fluoranthene	μg/kg	Varies**	<11	143	<11	<11	<11	<11	5,000	25,000	900*	8,000	170,000				2,100*
Benzo(k)fluoranthene	μg/kg	Varies**	<11	159	<11	<11	<11	<11	49,000	250,000	9,000	78,000	1,700,000				1,700
Benzo(ghi)perylene	μg/kg	Varies**	< 50	91	< 50	<50	<50	< 50									1,700
Chrysene	μg/kg	Varies**	< 50	163	< 50	< 50	< 50	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Dibenzo(a,h)anthracene	μg/kg	Varies**	<20	<200	<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
Fluoranthene	μg/kg	Varies**	< 50	584	< 50	< 50	< 50	< 50	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Fluorene	μg/kg	Varies**	< 50	334	< 50	< 50	< 50	< 50	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29	80	<29	<29	<29	<29	14,000	69,000	900*	8,000	170,000				1,600*
Naphthalene	μg/kg	Varies**	<25	20,600	<25	<25	<25	<25	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Phenanthrene	μg/kg	Varies**	< 50	791	< 50	< 50	< 50	< 50									2,500
Pyrene	μg/kg	Varies**	< 50	489	< 50	< 50	< 50	< 50	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Metals (6010B)				•	•	•	•				·			•	•	•	
Date Analyzed:	Units	Rep. Limit															
Total Lead	mg/kg	0.2							107***	1,420***	400	800	700				36
TCLP Metals Method 1311 (60)	10B)																
Date Analyzed:	Units	Rep. Limit	8/26/2008	8/26/2008	8/26/2008												
TCLP Metals	ml/L	0.002	0.005	< 0.002	< 0.002				0.0075	0.1							
Solids, Total (2540B)																	
Date Analyzed:	Units	Rep. Limit	8/21/2008	8/21/2008	8/21/2008	5/10/2012	5/10/2012	5/10/2012		•				•	•	•	
Total Solids	%		79.35	83.32	79.37	79.26	80.06	74.91									
* P		· · · · · · · · · · · · · · · · · · ·			- (itlin Maturo			T	EDA TACO Tim 1		•						

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO

the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

Date of Sample Cellection \$8.201 \$8.201 \$8.202				CS-4	CS-5	CS-6	CS-7	CS-8	CS-9				IEPA TA Soil Remediat	CO Tier 1 tion Objectives				
Time of Sample Collections S27 AM S41 AM S49 AM I132 AM	Date	of Samp	le Collection:	5/8/2012	5/8/2012	5/8/2012	5/8/2012	5/8/2012	5/8/2012	Groundwa	ter Ingestion			y			•	Statistical
Contaminans of Concerns ### FIX Organic Compounds (SQS-No-Robin) ### Port Analyses Data Analyses Units Rep. Limit \$15901 \$14902 \$14	Time	of Samp	ole Collection:	8:27 AM	8:41 AM	8:50 AM	11:32 AM	11:45 AM	12:07 PM	Class I	Class II	lential	strial/ nercial	ruction rker	lential	strial/ nercial	ruction	Background
BIEX Organic Compounds (835-8A5698) Date Analyzed: Units Rep. Limit 8 rep. Limit	Environmental Labor	atory Sai	mple Number:	12-2123-004	12-2123-005	12-2123-006	12-2123-007	12-2123-008	12-2123-009		C.M.S.J 11		Indu	Const	Resid	Indu	Const	
Date Analyzed: Usits Rep. Limit \$15391 \$143912	Contaminants of Concern:			•	•	•	•	•				,-						
Enzence	BTEX Organic Compounds (50)	35A/8260	0B)															
Form Part	Date Analyzed:	Units	Rep. Limit	5/15/2012	5/14/2012	5/14/2012	5/15/2012	5/14/2012	5/14/2012									
Ethylbenzene 195 kg Varies** 30,900 2,230 <5.0 115,000 <5.0 5.0 13,000 19,000 7,000,000 20,000,000 40,000 40,000 40,000 58,000 Folyauctear Aromatic Hydrocarbours (8270C)	Benzene	μg/kg	Varies**	5,490	355	< 5.0	18,200	5.4	< 5.0	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Fig. Exp.	Toluene	μg/kg	Varies**	18,800	< 500	< 5.0	166,000	< 5.0	< 5.0	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Polymechar Aromatic Hydrocarbons (\$270C) Date Analyzed: Units Rep. Limit \$18500L \$18	Ethylbenzene	μg/kg	Varies**	30,900	2,230	< 5.0	115,000	< 5.0	< 5.0	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Date Analyzed: Units Rep. Limit 515/901 515/90	Total Xylenes	μg/kg	Varies**	96,400	2,700	< 5.0	450,000	< 5.0	< 5.0	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Accessphithylene Inches	Polynuclear Aromatic Hydrocar	rbons (82	270C)	•	•	•	•		•									
Recomplethylene 192/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <5	Date Analyzed:	Units	Rep. Limit	5/15/2012	5/15/2012	5/15/2012	5/15/2012	5/15/2012	5/15/2012									
Accompthylene Inches Inc	Acenaphthene	ug/kg	Varies**	<50	<50	<50	60	<50	<50	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Anthracene		цо/ко	Varies**	<50	<50	<50	<50	<50	<50									70
Benzo(a)anthracene	1 -									12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				
Benzo(a)pyrene ng/kg Varies** <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15				<8.7	<8.7	<8.7	14.4	<8.7				900*	8,000	170,000				1.800*
Benzo(k)fluoranthene µg/kg Varies** <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11			Varies**	<15	<15	<15	<15	<15	<15	8,000	82,000	90*	800*	17,000				2,100*
Benzo(ghi)perylene	Benzo(b)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	<11	<11	5,000	25,000	900*	8,000	170,000				2,100*
Chrysene μg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Benzo(k)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	<11	<11	49,000	250,000	9,000	78,000	1,700,000				1,700
Dibenzo(a,h)anthracene µg/kg Varies** <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <2	Benzo(ghi)perylene	μg/kg	Varies**	<50	<50	<50	<50	<50	<50									1,700
Fluoranthene µg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Chrysene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Fluorene	Dibenzo(a,h)anthracene	μg/kg	Varies**	<20	<20	<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fluoranthene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	< 50	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fluorene	μg/kg	Varies**	< 50	< 50	< 50	91	< 50	< 50	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29	<29	<29	<29	<29	<29	14,000	69,000	900*	8,000	170,000				1,600*
Pyrene	Naphthalene	μg/kg	Varies**	2,110	619	<25	5,580	<25	<25	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Total Metals (6010B) Total Lead Mig/kg 0.2	Phenanthrene	μg/kg	Varies**	< 50	< 50	< 50	116	< 50	< 50									2,500
Date Analyzed: Units Rep. Limit	Pyrene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	< 50	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Lead mg/kg 0.2 107*** 1,420*** 400 800 700 36 TCLP Metals Method 1311 (6010B) Date Analyzed: Units Rep. Limit 0.0075 0.1	Total Metals (6010B)			•	•	•	•	•	•									
TCLP Metals Method 1311 (6010B)	Date Analyzed:	Units	Rep. Limit															
Date Analyzed: Units Rep. Limit	Total Lead	mg/kg	0.2							107***	1,420***	400	800	700				36
TCLP Metals ml/L 0.002 0.0075 0.1	TCLP Metals Method 1311 (601	0B)																
Solids, Total (2540B) Date Analyzed: Units Rep. Limit 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012		Units	Rep. Limit					-										
Date Analyzed: Units Rep. Limit 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012 5/10/2012		ml/L	0.002							0.0075	0.1							
	Solids, Total (2540B)																	
Total Solids % 78.39 78.08 80.30 80.00 81.70 81.56	Date Analyzed:	Units	Rep. Limit	5/10/2012	5/10/2012	5/10/2012	5/10/2012	5/10/2012	5/10/2012									
	Total Solids	%		78.39	78.08	80.30	80.00	81.70	81.56									

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

			CS-10	CS-11	CS-12	CS-13	CS-14	CS-15				IEPA TA Soil Remediat	CO Tier 1 ion Objectives				
1	Date of Samp	ole Collection:	5/8/2012	5/9/2012	5/9/2012	5/9/2012	5/9/2012	5/9/2012	Groundwa	onent of the ter Ingestion e Pathway		Ingestion Exposure Pathway	y		Inhalation Exposure Pathway	<i>y</i>	Metropolitan Statistical Area
Т	Time of Samp	ole Collection:	12:22 PM	9:36 AM	9:47 AM	10:39 AM	10:52 AM	11:33 AM	Class I	Class II	dential	Industria/ Commercial	onstruction Worker	dential	Industrial/ Commercial	Worker	Background Concentration
Environmental L	aboratory Sa	mple Number:	12-2123-010	12-2160-001	12-2160-002	12-2160-003	12-2160-004	12-2160-005	-		Resi	Indt	Const We	Resi	Indt	Const	
Contaminants of Concern:		'					•		•	•						•	
BTEX Organic Compounds	s (5035A/826	0B)															
Date Analyzed:	Units	Rep. Limit	5/15/2012	5/15/2012	5/15/2012	5/15/2012	5/15/2012	5/15/2012									
Benzene	μg/kg	Varies**	10,800	7.9	14.2	3,550	8,150	< 5.0	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Toluene	μg/kg	Varies**	128,000	< 5.0	< 5.0	51,200	124,000	< 5.0	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Ethylbenzene	μg/kg	Varies**	44,400	< 5.0	< 5.0	32,300	51,700	< 5.0	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Total Xylenes	μg/kg	Varies**	183,000	< 5.0	< 5.0	159,000	258,000	< 5.0	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Polynuclear Aromatic Hydro	rocarbons (82	270C)															
Date Analyzed:	Units	Rep. Limit	5/15/2012	5/15/2012	5/15/2012	5/15/2012	5/15/2012	5/15/2012									
Acenaphthene	ug/kg	Varies**	<50	<50	<50	58	99	<50	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Acenaphthylene	ug/kg	Varies**	<50	<50	<50	<50	<50	<50									70
Anthracene	μg/kg	Varies**	<50	<50	<50	<50	66	<50	12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(a)anthracene	μg/kg	Varies**	10.6	<8.7	<8.7	16.2	66.9	66.8	2,000	8,000	900*	8,000	170,000				1,800*
Benzo(a)pyrene	μg/kg	Varies**	<15	<15	<15	<15	44	55	8,000	82,000	90*	800*	17,000				2,100*
Benzo(b)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	45	58	5,000	25,000	900*	8,000	170,000				2,100*
Benzo(k)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	44	51	49,000	250,000	9,000	78,000	1,700,000				1,700
Benzo(ghi)perylene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	< 50		-	_						1,700
Chrysene	μg/kg	Varies**	< 50	< 50	< 50	< 50	61	52	160,000	800,000	88,000	780,000	17,000,000				2,700
Dibenzo(a,h)anthracene	μg/kg	Varies**	<20	<20	<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
Fluoranthene	μg/kg	Varies**	< 50	< 50	< 50	51	203	103	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Fluorene	μg/kg	Varies**	66	< 50	< 50	77	139	< 50	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29	<29	<29	<29	33	38	14,000	69,000	900*	8,000	170,000				1,600*
Naphthalene	μg/kg	Varies**	4,860	<25	<25	11,200	11,300	<25	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Phenanthrene	μg/kg	Varies**	101	< 50	< 50	138	339	< 50									2,500
Pyrene	μg/kg	Varies**	< 50	< 50	< 50	58	194	100	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Metals (6010B)			-														
Date Analyzed:	Units	Rep. Limit															
Total Lead	mg/kg	0.2							107***	1,420***	400	800	700				36
TCLP Metals Method 1311	(/																
Date Analyzed:		Rep. Limit									0						0-
TCLP Metals	ml/L	0.002							0.0075	0.1							
Solids, Total (2540B)																	
Date Analyzed:	Units	Rep. Limit	5/10/2012	5/11/2012	5/11/2012	5/11/2012	5/11/2012	5/11/2012									
Total Solids	%		81.82	82.32	82.16	79.71	77.94	82.05									

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO

the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

Date of Sample Collection 59/2012 59/201	
Environmental Laboratory Sample Number 12:2160.006 12:2160.007 12:2160.008 12:2160.009 12:2160.009 12:2120.01 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2212.001 12:2012.001 12	Metropolitan Statistical Area
Contaminants of Concern: Excision Exci	Background Concentration
Date Analyzed: Units Rep. Limit S152012 S15201	
Date Analyzed: Units Rep. Limit \$195001 \$5182002 \$518	All .
Benzene μg/kg Varies** <5.0 3,150 7,570 1,520 3,640 <5.0 30 170 12,000 10,000 2,300,000 800 1,600 2,200	
Toluene μg/kg Varies** <5.0 60,600 95,400 1,520 14,000 <5.0 12,000 29,000 16,000,000 410,000,000 650,000 650,000 650,000 620,000 42,000 650,000 6	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Total Xylenes μg/kg Varies** <5.0 197,000 195,000 7,430 116,000 <5.0 150,000 150,000 16,000,000 41,000,000 320,000 320,000 320,000 5,600	
Polynuclear Aromatic Hydrocarbons (8270C) Date Analyzed: Units Rep. Limit S152012 S1	
Date Analyzed: Units Rep. Limit S152012 S1520	
Acenaphthene μg/kg Varies** <50 56 64 55 <50 <50 570,000 2,900,000 4,700,000 120,000,000 120,000,000	,dl
Acenaphthene μg/kg Varies** <50 56 64 55 <50 <50 570,000 2,900,000 4,700,000 120,000,000 120,000,000	
Acenaphthylene $\mu g/kg$ $Varies**$ <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	130
Anthracene μg/kg Varies** <50 <50 60 <50 <50 <50 <50 2,000,000 59,000,000 23,000,000 610,000,000	70
Benzo(a)anthracene μg/kg Varies** <8.7 19.0 54.6 60.3 25.2 <8.7 2,000 8,000 900* 8,000 170,000 ··· ··· ··· ··· Benzo(a)pyrene μg/kg Varies** <15 <15 31 47 17 <15 8,000 82,000 90° 800° 17,000 ··· ··· ··· ··· ··· ··· Benzo(b)fluoranthene μg/kg Varies** <11 12 34 51 18 <11 5,000 25,000 900° 8,000 170,000 ···	400
Benzo(a)pyrene μg/kg Varies** <15 <15 31 47 17 <15 8,000 82,000 90* 800* 17,000	1.800*
Benzo(b)fluoranthene µg/kg Varies**	2,100*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,100*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,700
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,700
Fluoranthene $\mu g/kg$ $Varies**$ <50 54 153 177 74 <50 $4,300,000$ $21,000,000$ $3,100,000$ $82,000,000$ $82,000,000$ $$ $$ $$ Fluoranthene $\mu g/kg$ $Varies**$ <50 68 100 93 54 <50 $560,000$ $2,800,000$ $3,100,000$ $82,000,000$ $82,000,000$ $$ $$ $$ $$ Indeno(1,2,3-cd)pyrene $\mu g/kg$ $Varies**$ <29 <29 <29 34 <29 <29 $14,000$ $69,000$ 900 900 * $8,000$ $170,000$ $$ $$ $$ $$ $$ $$ $$	2,700
Fluorene $\mu g/kg$ $Varies**$ <50 68 100 93 54 <50 $560,000$ $2,800,000$ $3,100,000$ $82,000,000$ $82,000,000$ $$ $$ $$ $$ $$ $$ $$	420*
	4,100
Naphthalene μg/kg Varies** <25 9,090 6,930 6,940 4,020 <25 12,000 18,000 1,600,000 41,000,000 4,100,000 170,000 270,000 1,800 Phenanthrene μg/kg Varies** <50	180
Phenanthrene μg/kg Varies** <50 129 227 231 113 <50 <	1,600*
Pyrene µg/kg Varies** <50 56 139 161 70 <50 4,200,000 21,000,000 61,000,000 61,000,000	200
	2,500
Total Metals (6010R)	3,000
Total Mictals (1971)	
Date Analyzed: Units Rep. Limit	
Total Lead mg/kg 0.2 1107*** 1,420*** 400 800 700	36
TCLP Metals Method 1311 (6010B)	
Date Analyzed: Units Rep. Limit	
TCLP Metals ml/L 0.002 0.0075 0.1	
Solids, Total (2540B)	
Date Analyzed: Units Rep. Limit 5/11/2012 5/11/2012 5/11/2012 5/11/2012 5/11/2012 5/11/2012 5/11/2012 5/14/2012	
Total Solids % 82.12 78.95 78.42 80.66 79.82 78.17	

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO

the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H. **Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

	e of Samp					CS-25	CS-26	CS-27				Soil Remediat	ion Objectives				
Time		le Collection:	5/10/2012	5/10/2012	5/10/2012	5/10/2012	5/10/2012	5/10/2012	Groundwa	onent of the er Ingestion Pathway		Ingestion Exposure Pathway	y		Inhalation Exposure Pathway		Metropolitan Statistical Area
	e of Samp	le Collection:	7:42 AM	7:50 AM	8:03 AM	8:12 AM	11:21 AM	11:33 AM	Class I	Class II	lential	Industrial/ Commercial	onstruction Worker	lential	Industrial/ Commercial	Worker	Background Concentration
Environmental Labor	ratory Sar	nple Number:	12-2212-002	12-2212-003	12-2212-004	12-2212-005	12-2212-006	12-2212-007		0	Resid	Indu	Const Wo	Resi	Indu	Const Wo	
Contaminants of Concern:		•					•				,-						,
BTEX Organic Compounds (50)	35A/8260)B)															
Date Analyzed:	Units	Rep. Limit	5/19/2012	5/19/2012	5/19/2012	5/19/2012	5/20/2012	5/20/2012									
Benzene	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	976	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Toluene	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 500	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Ethylbenzene	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	70,900	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Total Xylenes	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	61,700	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Polynuclear Aromatic Hydrocai	rbons (82	270C)					•										V
Date Analyzed:	Units	Rep. Limit	5/16/2012	5/16/2012	5/16/2012	5/16/2012	5/16/2012	5/16/2012									
Acenaphthene	μg/kg	Varies**	<50	<50	<50	<50	<50	202	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Acenaphthylene	μg/kg	Varies**	<50	<50	<50	<50	< 50	< 50									70
Anthracene	μg/kg	Varies**	< 50	<50	< 50	< 50	<50	60	12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(a)anthracene	μg/kg	Varies**	<8.7	<8.7	<8.7	<8.7	<8.7	36.7	2,000	8,000	900*	8,000	170,000				1,800*
Benzo(a)pyrene	μg/kg	Varies**	<15	<15	<15	<15	<15	20	8,000	82,000	90*	800*	17,000				2,100*
Benzo(b)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	<11	22	5,000	25,000	900*	8,000	170,000				2,100*
Benzo(k)fluoranthene	μg/kg	Varies**	<11	<11	<11	<11	<11	20	49,000	250,000	9,000	78,000	1,700,000				1,700
Benzo(ghi)perylene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	< 50									1,700
Chrysene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Dibenzo(a,h)anthracene	μg/kg	Varies**	<20	<20	<20	<20	<20	<20	2,000	7,600	90*	800	17,000				420*
Fluoranthene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	113	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Fluorene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	282	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29	<29	<29	<29	<29	<29	14,000	69,000	900*	8,000	170,000				1,600*
Naphthalene	μg/kg	Varies**	<25	<25	<25	<25	<25	20,500	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Phenanthrene	μg/kg	Varies**	< 50	< 50	< 50	< 50	53	415									2,500
Pyrene	μg/kg	Varies**	< 50	< 50	< 50	< 50	< 50	133	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Metals (6010B)							-	-									
Date Analyzed:	Units	Rep. Limit				-				•	•	•	•	•		•	
Total Lead	mg/kg	0.2							107***	1,420***	400	800	700				36
TCLP Metals Method 1311 (601	- /			·													
Date Analyzed:	Units	Rep. Limit															
TCLP Metals	ml/L	0.002							0.0075	0.1							
Solids, Total (2540B)					,				<u> </u>								
Date Analyzed:	Units	Rep. Limit	5/14/2012	5/14/2012	5/14/2012	5/14/2012	5/14/2012	5/14/2012									
Total Solids	%		80.13	81.27	81.35	76.55	77.74	78.92									

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

Statistical Part Statistical Color Stati				CS-28	CS-29	CS-30	CS-31	CS-32	CS-33				IEPA TA Soil Remediat	CO Tier 1 ion Objectives				
Reviewmental Laboratory Sample Number 12 221 208 12		Date of Samp	ole Collection:	5/10/2012	5/11/2012	5/11/2012	5/11/2012	5/11/2012	5/11/2012	Groundwa	ter Ingestion			y			<i>y</i>	Metropolitan Statistical
Contaminant of Concerns First Organic Compounds (SUSX-NEOHI) First Organic Compounds (SUSX		Time of Sam	ple Collection:	11:42 AM	7:33 AM	7:41 AM	7:55 AM	8:11 AM	8:19 AM	Class I	Class II	lential	strial/ nercial	ruction rker	lential	strial/ nercial	ruction rker	Background Concentration
Decay Composed C	Environmental	Laboratory Sa	mple Number:	12-2212-008	12-2212-009	12-2212-010	12-2212-011	12-2212-012	12-2212-013			Resic	Indu	Const Wo	Resi	Indu	Const	
Date Analyzed: Usits Rep. Limit \$50.001 \$50.00	Contaminants of Concern:							•		•	•						•	
Bezzene	BTEX Organic Compound	ds (5035A/826	0B)															
Foliage Inference Infere	Date Analyzed:	Units	Rep. Limit	5/20/2012	5/20/2012	5/20/2012	5/20/2012	5/20/2012	5/20/2012									
Ethylenarene	Benzene	μg/kg	Varies**	23.6	< 5.0	< 5.0	124	12,000	40,200	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
First Mystems Mystem	Toluene	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	13.6	< 500	<5,000	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Polymeter Aromatic Hydrocarbons (\$270C) Dista National Stational Sta	Ethylbenzene	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	715	57,000	238,000	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Date Analyzed: Units Rep. Limit Sisonal Sisona	Total Xylenes	μg/kg	Varies**	< 5.0	< 5.0	< 5.0	525	103,000	306,000	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Acenaphthene µg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Polynuclear Aromatic Hyo	irocarbons (8	270C)						, ,	,						•		
Acenaphthene µg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Date Analyzed:	Units	Rep. Limit	5/16/2012	5/16/2012	5/16/2012	5/16/2012	5/16/2012	5/16/2012									
Accomplatylene ug/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50				<50	<50	<50	<50	497	507	570,000	2.900.000	4.700.000	120.000.000	120,000,000				130
Anthracene		100								/	, ,	,,	.,,	.,,				
Benzo(a)anthracene		100								12,000,000	59.000.000	23.000.000	610.000.000	610.000.000				
Benzo(a)pyrene µg/kg Varies** <15 <15 <15 <23 353 165 8,000 82,000 90* 800* 17,000 2,100*										,,	/ /	- / /	,,	,,				
Benzo(b)fluoranthene	()									,	- /		- /	,				
Renzo(ghi)perylene pg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	(717											900*	8,000					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Benzo(k)fluoranthene	μg/kg	Varies**	<11	<11	<11	24	208	188	49,000	250,000	9,000	78,000	1,700,000				1,700
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Benzo(ghi)perylene	μg/kg	Varies**	<50	<50	<50	<50	208	123									1,700
Fluoranthene pg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <5	Chrysene	μg/kg		<50	<50	< 50	<50	368	142	160,000	800,000	88,000	780,000	17,000,000				2,700
Fluorene pg/kg Varies** <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Dibenzo(a,h)anthracene	μg/kg	Varies**	<20	<20	<20	<20	53	35	2,000	7,600	90*	800	17,000				420*
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fluoranthene	μg/kg	Varies**	< 50	< 50	< 50	79	1,040	423	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Naphthalene μg/kg Varies** <25 <25 47 515 32,000 21,200 12,000 18,000 1,600,000 41,000,000 41,000,000 41,000,000 270,000 1,800 200	Fluorene	μg/kg	Varies**	<50	<50	<50	<50	584	695	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Phenanthrene	Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29	<29	<29	<29	231	138	14,000	69,000	900*	8,000	170,000				1,600*
Pyrene	Naphthalene	μg/kg	Varies**	<25	<25	47	515	32,000	21,200	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Total Metals (6010B) Total Analyzed: Units Rep. Limit	Phenanthrene	μg/kg	Varies**	< 50	< 50	< 50	109	1,780	1,720		-	_						2,500
Date Analyzed: Units Rep. Limit	Pyrene	μg/kg	Varies**	< 50	< 50	< 50	76	1,020	519	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Date Analyzed: Units Rep. Limit	Total Metals (6010B)				•	•		•										
TCLP Metals Method 1311 (6010B)		Units	Rep. Limit															
Date Analyzed: Units Rep. Limit	Total Lead	mg/kg	0.2							107***	1,420***	400	800	700				36
TCLP Metals ml/L 0.002 0.0075 0.1	TCLP Metals Method 131	1 (6010B)																
Solids, Total (2540B) Date Analyzed: Units Rep. Limit 5/14/2012 5/14/2012 5/14/2012 5/14/2012 5/14/2012 5/14/2012 5/14/2012 5/14/2012 5/14/2012 5/14/2012 5/14/2012	Date Analyzed:	Units	Rep. Limit															
Date Analyzed: Units Rep. Limit 5/14/2012 5/14/2012 5/14/2012 5/14/2012 5/14/2012 5/14/2012 5/14/2012	TCLP Metals	ml/L	0.002							0.0075	0.1							
Sut Thing Act China Act Plant	Solids, Total (2540B)	-,									•				•	•		
7.10 11	Date Analyzed:	Units	Rep. Limit	5/14/2012	5/14/2012	5/14/2012	5/14/2012	5/14/2012	5/14/2012									
Total Solids % 81.09 /9./8 /9.28 //.30 8/.09 83.48	Total Solids	%		81.09	79.78	79.28	77.36	87.09	85.48									

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

Date of Sample Collection:				CS-34	-	SB-4R 3-5'	SB-4R 5-7'	SB-A 3-5'	SB-A 5-7'				IEPA TA Soil Remediat	CO Tier 1 ion Objectives				
Environmental Laboratory Sample Number 12-221-2014 18-6058-001 18-6058-002 18-6058-003 18-6058-003 18-6058-003 18-6058-004	Date of Sample Collection:		5/11/2012		10/10/2018	10/10/2018	10/10/2018	10/10/2018	Groundwater Ingestion								Metropolitan Statistical Area	
Contaminants of Concern:		Time of Sample Collection		8:29 AM		9:15 AM	9:20 AM	10:05 AM	10:10 AM	Class I	Class II	lential	strial/ nercial	ruction rker	lential	strial/ nercial	ruction rker	Background Concentration
## DEFA CAMPAYOR Units Rep. Limit 520901	Environmental Laboratory Sample Numbe		mple Number:	12-2212-014		18-6058-001	18-6058-002	18-6058-003	18-6058-004			Resic	Indu	Const Wo	Resid	Indu	Const	
Date Analyzed: Turk Rep. Limit Sept. Sept.	Contaminants of Concern:			•	•		•	•	•			,						
Benzence	BTEX Organic Compoun	ds (5035A/826	(0B)															
Toleane	Date Analyzed:	Units	Rep. Limit	5/20/2012	_	10/15/2018	10/15/2018	10/15/2018	10/15/2018									
Ethylbenzene	Benzene	μg/kg	Varies**	26,000		56.0	2,120	16,400	790	30	170	12,000	100,000	2,300,000	800	1,600	2,200	
Total Nyshees Ing/kg Varies** 225.000 <500 <500 64.900 776 150,000 150,000 16,000,000 41,000,000 320,000 320,000 5,600	Toluene	μg/kg	Varies**	<5,000		< 500	< 500	2,440	< 500	12,000	29,000	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	
Polymericar Aromatic Hydrocarbons (8270C) Date Analyzed: Units Rep. Limit S1020 101172018 10152018	Ethylbenzene	μg/kg	Varies**	168,000		2,550	694	63,000	3,390	13,000	19,000	7,800,000	200,000,000	20,000,000	400,000	400,000	58,000	
Date Analyzed: Units Rep. Limit S162012 10172018 10152018 10152018 10152018	Total Xylenes	μg/kg	Varies**	225,000		< 500	< 500	64,900	776	150,000	150,000	16,000,000	410,000,000	41,000,000	320,000	320,000	5,600	
Acenaphthene μg/kg Varies** 726 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50													0					
Acenaphthylene	Date Analyzed:	Units	Rep. Limit	5/16/2012		10/17/2018	10/15/2018	10/15/2018	10/15/2018									
Access	Acenaphthene	ug/kg	Varies**	726		<50	<50	<50	<50	570,000	2,900,000	4,700,000	120,000,000	120,000,000				130
Anthracene				<50		<50	<50	<50	<50									70
Benzo(a)pyrene µg/kg Varies** 24 55 24 174 <15 8,000 82,000 90° 800° 17,000				178		<50	<50	<50	<50	12,000,000	59,000,000	23,000,000	610,000,000	610,000,000				400
Benzo(b)fluoranthene	Benzo(a)anthracene	μg/kg	Varies**	53.8		60.5	24.4	182	<8.7	2,000	8,000	900*	8,000	170,000				1,800*
Benzo(k)fluoranthene	Benzo(a)pyrene	μg/kg	Varies**	24		55	24	174	<15	8,000	82,000	90*	800*	17,000				2,100*
Benzo(ghi)perylene μg/kg Varies** <50 53 <50 130 <50	Benzo(b)fluoranthene	μg/kg	Varies**	27		53	25	198	<11	5,000	25,000	900*	8,000	170,000				2,100*
Chrysene	Benzo(k)fluoranthene	μg/kg	Varies**	25		82	33	199	<11	49,000	250,000	9,000	78,000	1,700,000				1,700
Dibenzo(a,h)anthracene pg/kg Varies** <20	Benzo(ghi)perylene	μg/kg	Varies**	< 50		53	< 50	130	< 50									1,700
Fluoranthene µg/kg Varies** 266 160 75 570 <50 4,300,000 21,000,000 3,100,000 82,000,000 Fluoranthene µg/kg Varies** 940 <50 <50 <50 <50 <50 <50 560,000 2,800,000 3,100,000 82,000,000 82,000,000 Fluoranthene µg/kg Varies** <29 44 <29 146 <29 14,000 69,000 900* 8,000 170,000 170,000 270,000 1,800	Chrysene	μg/kg	Varies**	< 50		93	< 50	237	< 50	160,000	800,000	88,000	780,000	17,000,000				2,700
Fluorene	Dibenzo(a,h)anthracene	μg/kg	Varies**	<20		<20	<20	36	<20	2,000	7,600	90*	800	17,000				420*
Indeno(1,2,3-cd)pyrene Igg kg Varies** <29 44 <29 146 <29 14,000 69,000 900* 8,000 170,000 Naphthalene Igg kg Varies** 52,300 1,050 593 1,490 259 12,000 18,000 1,600,000 41,000,000 4,100,000 170,000 270,000 1,800 Naphthalene Igg kg Varies** 1,140 87 58 369 <50 Naphthalene Igg kg Varies** 322 147 56 414 <50 4,200,000 21,000,000 2,300,000 61,000,000 61,000,000 Naphthalene Igg kg Naphthalene Igg kg Varies** 322 147 56 414 <50 4,200,000 21,000,000 2,300,000 61,000,000 61,000,000 Naphthalene Igg kg Naphthalene Igg kg Naphthalene Igg kg Naphthalene Igg kg Naphthalene Naphthalene Igg kg Igg kg kg Igg kg Igg kg Igg kg Igg kg kg Igg kg k	Fluoranthene	μg/kg	Varies**	266		160	75	570	< 50	4,300,000	21,000,000	3,100,000	82,000,000	82,000,000				4,100
Naphthalene	Fluorene	μg/kg	Varies**	940		< 50	< 50	< 50	< 50	560,000	2,800,000	3,100,000	82,000,000	82,000,000				180
Phenanthrene Igg/kg Varies** 1,140 87 58 369 <50	Indeno(1,2,3-cd)pyrene	μg/kg	Varies**	<29		44	<29	146		14,000	69,000	900*	8,000	170,000				1,600*
Pyrene ng/kg Varies** 322 147 56 414 <50 4,200,000 21,000,000 2,300,000 61,000,000 61,000,000	Naphthalene	μg/kg	Varies**	52,300		1,050	593	1,490	259	12,000	18,000	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	200
Total Metals (6010B) Date Analyzed: Units Rep. Limit 107*** 1,420*** 400 800 700	Phenanthrene	μg/kg	Varies**	1,140		87	58	369	< 50									2,500
Date Analyzed: Units Rep. Limit	Pyrene	μg/kg	Varies**	322		147	56	414	<50	4,200,000	21,000,000	2,300,000	61,000,000	61,000,000				3,000
Total Lead mg/kg 0.2 107*** 1,420*** 400 800 700 TCLP Metals Method 1311 (6010B) Date Analyzed: Units Rep. Limit	Total Metals (6010B)																	
TCLP Metals Method 1311 (6010B) Date Analyzed: Units Rep. Limit	Date Analyzed:	Units	Rep. Limit					-				•		•		•		
Date Analyzed: Units Rep. Limit	Total Lead	mg/kg	0.2							107***	1,420***	400	800	700				36
TCLP Metals ml/L 0.002 0.0075 0.1	TCLP Metals Method 131	11 (6010B)		•	•	•	•	•										
			Rep. Limit															
Solids, Total (2540B)		ml/L	0.002							0.0075	0.1							
	Solids, Total (2540B)																	
Date Analyzed: Units Rep. Limit 5/14/2012 10/12/2018 10/12/2018 10/12/2018 10/12/2018	Date Analyzed:	Units	Rep. Limit	5/14/2012		10/12/2018	10/12/2018	10/12/2018	10/12/2018									<u> </u>
Total Solids % 71.94 76.94 80.95 78.88 86.84	Total Solids	%		71.94		76.94	80.95	78.88	86.84						-	_		

^{*} Pursuant to 35 IAC 742.415(b)(2), for those PNA compounds whose background concentrations (within Metropolitan Statistical Areas) exceed the most stringent IEPA TACO Tier 1 SRO

the background concentration shall be used as the Tier 1 Soil Ingestion Remediation Objective as promulgated in 35 IAC 742 Appendix A, Table H.

^{**}Reporting limits varies for each sample and/or analyte. Please refer to laboratory analytical report for individual laboratory reporting limits. When sample result is non-detect, the number following "<" is typically the laboratory reporting limit for that sample ana *** Soil Component of the Groundwater Ingestion Exposure Route SRO based on a pH range of 6.25 to 8.74
Note: Analytical testing results for BTEX and PNAs are expressed in parts-per-billion (ppb) concentrations:

Note: Analytical testing results for leads are expressed in parts-per-million (ppm) concentration:

Note: Italicized samples were removed during Corrective Action activities.

Note: Exceedences of the IEPA TACO Tier 1 SROs (or PNA background concentrations) irbold.

EXHIBIT B-2Summary of Analytical Results - Groundwater

			MW-1		MW-2		MW-3		IEPA TACO Tier 1 Groundwater	
Date	7/22/2004	10/8/2008	7/22/2004	10/8/2008	7/22/2004	10/8/2008				
Time of Sample Collection:			11:10 AM	10:11 AM	11:20 AM	10:21 AM	11:30 AM	10:38 AM	Remediatio	n Objectives
Environmental Laboratory Sample Number:			32627	8-4577-001	32628	8-4577-002	32629	8-4577-003	Class I	Class II
Contaminants of Concern:	<u> </u>	_				ı	ı			
BTEX/MTBE Organic Comp	ounds (5030B/8260B))							
Date Analyzed:	Units	Rep. Limit	7/28/2004	10/14/2008	7/28/2004	10/14/2008	7/29/2004	10/14/2008		
Benzene	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	26.7	32.3	5.0	25.0
Toluene	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	1,000	2,500
Ethylbenzene	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	700	1000
Total Xylenes	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50	< 5.0	10,000	10,000
Polynuclear Aromatic Hydro	carbons	(8270C)								
Date Analyzed:	Units	Rep. Limit	7/27/2004	10/14/2008	7/27/2004	10/14/2008	7/27/2004	10/14/2008		
Acenaphthene	ug/L	10	<10	<10	<10	<10	<10	<10	420	2,100
Acenaphthylene	ug/L	10	<10	<10	<10	<10	<10	<10		
Anthracene	ug/L	5	<5	<5	<5	<5	<5	<5	2,100	10,500
Benzo(a)anthracene	ug/L	0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	0.13	0.65
Benzo(a)pyrene	ug/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.20	2.00
Benzo(b)fluoranthene	ug/L	0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	0.18	0.90
Benzo(k)fluoranthene	ug/L	0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	0.17	0.85
Benzo(ghi)perylene	ug/L	0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4		
Chrysene	ug/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	1.5	7.5
Dibenzo(a,h)anthracene	ug/L	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.3	1.5
Fluoranthene	ug/L	2	<2	<2	<2	<2	<2	<2	280	1,400
Fluorene	ug/L	2	<2	<2	<2	<2	<2	<2	280	1,400
Indeno(1,2,3-cd)pyrene	ug/L	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.43	2.15
Naphthalene	ug/L	10	<10	<10	<10	<10	<10	<10	140	220
Phenanthrene	ug/L	5	<5	<5	<5	<5	<5	<5		
Pyrene	ug/L	2	<2	<2	<2	<2	<2	<2	210	1,050
Metals (3010A/6010B)										
Date Analyzed:	Units	Rep. Limit	7/27/2004	10/10/2008	7/27/2004	10/10/2008	7/27/2004	10/10/2008		
Lead	mg/L	0.002	< 0.002	< 0.002	0.003	< 0.002	< 0.002	< 0.002	0.0075	0.1

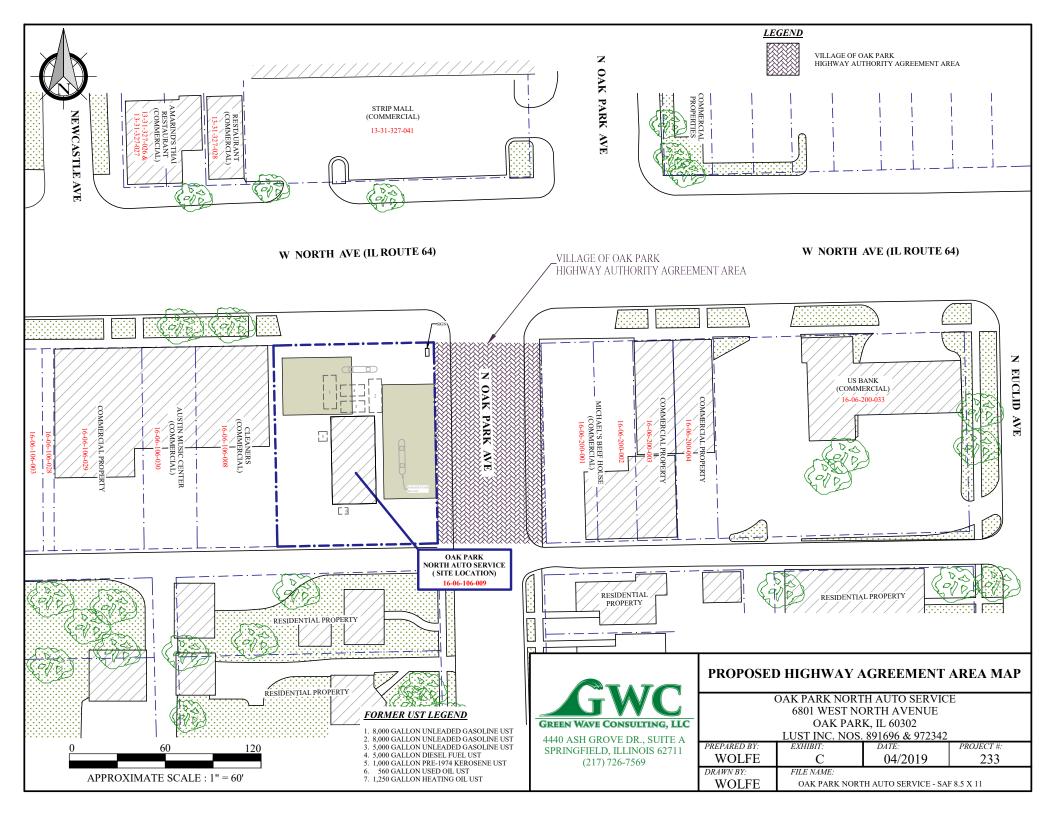
Note: Analytical testing results for lead are expressed in parts-per-million (ppm) concentrations.

EXHIBIT B-2Summary of Analytical Results - Groundwater

			MW-4		MW-5		MW-6		IEPA TACO Tier 1 Groundwater	
Date	7/22/2004	10/8/2008	8/16/2005	10/8/2008	8/16/2005	10/8/2008		oundwater n Objectives		
Time of Sample Collection:			11:40 AM	10:47 AM	11:00 AM	11:04 AM	11:30 AM	11:18 AM	Remediatio	n Objectives
Environmental Laboratory Sample Number:			32630	8-4577-004	5-2534-001	8-4577-005	5-2534-002	8-4577-006	Class I	Class II
Contaminants of Concern:										1
BTEX/MTBE Organic Comp	ounds (5030B/8260B))							
Date Analyzed:	Units	Rep. Limit	7/29/2004	10/15/2008	8/22/2005	10/14/2008	8/22/2005	10/14/2008		
Benzene	μg/L	5.0	3,950	1,480	< 5.0	< 5.0	< 5.0	< 5.0	5.0	25.0
Toluene	μg/L	5.0	2,790	45.1	< 5.0	< 5.0	< 5.0	< 5.0	1,000	2,500
Ethylbenzene	μg/L	5.0	383	158	< 5.0	<5.0	< 5.0	< 5.0	700	1000
Total Xylenes	μg/L	5.0	1,940	279	< 5.0	<5.0	<5.0	< 5.0	10,000	10,000
Polynuclear Aromatic Hydro	carbons	(8270C)								
Date Analyzed:	Units	Rep. Limit	7/27/2004	10/14/2008	8/19/2005	10/14/2008	8/19/2005	10/14/2008		
Acenaphthene	ug/L	10	<10	<10	<10	<10	<10	<10	420	2,100
Acenaphthylene	ug/L	10	<10	<10	<10	<10	<10	<10		
Anthracene	ug/L	5	<5	<5	<5	<5	<5	<5	2,100	10,500
Benzo(a)anthracene	ug/L	0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	0.13	0.65
Benzo(a)pyrene	ug/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.20	2.00
Benzo(b)fluoranthene	ug/L	0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	0.18	0.90
Benzo(k)fluoranthene	ug/L	0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	0.17	0.85
Benzo(ghi)perylene	ug/L	0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4		
Chrysene	ug/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	1.5	7.5
Dibenzo(a,h)anthracene	ug/L	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.3	1.5
Fluoranthene	ug/L	2	<2	<2	<2	<2	<2	<2	280	1,400
Fluorene	ug/L	2	<2	<2	<2	<2	<2	<2	280	1,400
Indeno(1,2,3-cd)pyrene	ug/L	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.43	2.15
Naphthalene	ug/L	10	34	53	<10	<10	<10	<10	140	220
Phenanthrene	ug/L	5	<5	<5	<5	<5	<5	<5		
Pyrene	ug/L	2	<2	<2	<2	<2	<2	<2	210	1,050
Metals (3010A/6010B)										-
Date Analyzed:	Units	Rep. Limit	7/27/2004	10/10/2008	8/23/2005	10/10/2008	8/23/2005	10/10/2008		
Lead	ug/L	10	0.011	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.0075	0.1

Note: Analytical testing results for lead are expressed in parts-per-million (ppm) concentrations.

EXHIBIT B-2Summary of Analytical Results - Groundwater


			MV	W-7	MW-8		MW-9		IEPA TACO Tier 1 Groundwater	
Date of Sample Collection:			8/16/2005	10/8/2008	8/16/2005	10/8/2008	8/16/2005	10/8/2008		oundwater on Objectives
Time of Sample Collection:			11:45 AM	11:31 AM	10:00 AM	11:44 AM	10:15 AM	11:57 AM	Kemeulauo	in Objectives
Environmental Laboratory Sample Number:			5-2534-003	8-4577-007	5-2534-004	8-4577-008	5-2534-005	8-4577-009	Class I	Class II
Contaminants of Concern:								<u>'</u>		· ·
BTEX/MTBE Organic Com	pounds (5030B/8260B)								
Date Analyzed:	Units	Rep. Limit	8/22/2005	10/14/2008	8/23/2005	10/14/2008	8/23/2005	10/15/2008		
Benzene	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	13,400	18,100	5.0	25.0
Toluene	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	346	522	1,000	2,500
Ethylbenzene	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	2,010	9,870	700	1000
Total Xylenes	μg/L	5.0	< 5.0	< 5.0	< 5.0	< 5.0	7,550	13,200	10,000	10,000
Polynuclear Aromatic Hydro	ocarbons	(8270C)								
Date Analyzed:	Units	Rep. Limit	8/22/2015	10/14/2008	8/22/2015	10/14/2008	8/22/2005	10/16/2008		
Acenaphthene	ug/L	10	<10	<10	<10	<10	<10	<10	420	2,100
Acenaphthylene	ug/L	10	<10	<10	<10	<10	<10	<10		
Anthracene	ug/L	5	<5	<5	<5	<5	<5	<5	2,100	10,500
Benzo(a)anthracene	ug/L	0.13	< 0.13	< 0.13	< 0.13	< 0.13	1.0	< 0.13	0.13	0.65
Benzo(a)pyrene	ug/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.7	< 0.2	0.20	2.00
Benzo(b)fluoranthene	ug/L	0.18	< 0.18	< 0.18	< 0.18	< 0.18	0.61	< 0.18	0.18	0.90
Benzo(k)fluoranthene	ug/L	0.17	< 0.17	< 0.17	< 0.17	< 0.17	0.67	< 0.17	0.17	0.85
Benzo(ghi)perylene	ug/L	0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4		
Chrysene	ug/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	1.5	7.5
Dibenzo(a,h)anthracene	ug/L	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.3	1.5
Fluoranthene	ug/L	2	<2	<2	<2	<2	3.0	<2	280	1,400
Fluorene	ug/L	2	<2	<2	<2	<2	3.0	<2	280	1,400
Indeno(1,2,3-cd)pyrene	ug/L	0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.4	< 0.3	0.43	2.15
Naphthalene	ug/L	10	<10	<10	<10	<10	659	< 500	140	220
Phenanthrene	ug/L	5	<5	<5	<5	<5	5	<5		
Pyrene	ug/L	2	<2	<2	<2	<2	2	<2	210	1,050
Metals (3010A/6010B)										
Date Analyzed:	Units	Rep. Limit	8/23/2005	10/10/2008	8/23/2005	10/10/2008	8/23/2005	10/10/2008		1
Lead	ug/L	10	< 0.002	< 0.002	0.014	< 0.002	0.255	< 0.002	0.0075	0.1

Note: Analytical testing results for lead are expressed in parts-per-million (ppm) concentrations.

EXHIBIT B-2Summary of Analytical Results - Groundwater

			MW-10		 		 IEPA '	
Date	ole Collection:	8/16/2005	10/8/2008	 		 Tier 1 Gro	oundwater 1 Objectives	
Time	10:30 AM	12:12 PM	 		 Kemediatio	i Objectives		
Environmental Laboratory Sample Number			5-2534-006	8-4577-010	 		 Class I	Class II
Contaminants of Concern:					1	•		
BTEX/MTBE Organic Comp	ounds (5030B/8260B))					
Date Analyzed:	Units	Rep. Limit	8/23/2005	10/14/2008	 			
Benzene	μg/L	5.0	< 5.0	< 5.0	 		 5.0	25.0
Toluene	μg/L	5.0	< 5.0	< 5.0	 		 1,000	2,500
Ethylbenzene	μg/L	5.0	< 5.0	< 5.0	 		 700	1000
Total Xylenes	μg/L	5.0	< 5.0	< 5.0	 		 10,000	10,000
Polynuclear Aromatic Hydro	carbons	(8270C)						
Date Analyzed:	Units	Rep. Limit	8/22/2015	10/16/2008	 			
Acenaphthene	ug/L	10	<10	<10	 		 420	2,100
Acenaphthylene	ug/L	10	<10	<10	 		 	
Anthracene	ug/L	5	<5	<5	 		 2,100	10,500
Benzo(a)anthracene	ug/L	0.13	< 0.13	< 0.13	 		 0.13	0.65
Benzo(a)pyrene	ug/L	0.2	< 0.2	< 0.2	 		 0.20	2.00
Benzo(b)fluoranthene	ug/L	0.18	< 0.18	< 0.18	 		 0.18	0.90
Benzo(k)fluoranthene	ug/L	0.17	< 0.17	< 0.17	 		 0.17	0.85
Benzo(ghi)perylene	ug/L	0.4	< 0.4	< 0.4	 		 	
Chrysene	ug/L	1.5	<1.5	<1.5	 		 1.5	7.5
Dibenzo(a,h)anthracene	ug/L	0.3	< 0.3	< 0.3	 		 0.3	1.5
Fluoranthene	ug/L	2	<2	<2	 		 280	1,400
Fluorene	ug/L	2	<2	<2	 		 280	1,400
Indeno(1,2,3-cd)pyrene	ug/L	0.3	< 0.3	< 0.3	 		 0.43	2.15
Naphthalene	ug/L	10	<10	<10	 		 140	220
Phenanthrene	ug/L	5	<5	<5	 		 	
Pyrene	ug/L	2	<2	<2	 		 210	1,050
Metals (3010A/6010B)							 	-
Date Analyzed:	Units	Rep. Limit	8/23/2005	10/10/2008	 			
Lead	ug/L	10	< 0.002	< 0.002	 		 0.0075	0.1

Note: Analytical testing results for lead are expressed in parts-per-million (ppm) concentrations.

Legal Description

Lots 1, 2, 3 and 4 in Block 1 in Salingers and Hubbards Kenilworth Boulevard Addition to Oak Park, a subdivision in the East half of the North West quarter of Section 6, Township 39 North, Range 13, East of the Third Principal Meridian in Cook County, Illinois.

Commonly Known As:

6801 West North Avenue, Oak Park, IL 60302

Parcel Identification Number

16-06-106-009-0000

CLERK'S CERTIFICATE

I, Sandra Sokol, Village Clerk of the Village of Oak Park,

in the County of Cook and the State of Illinois, do hereby

certify that ORDINANCE #2001-0-107 entitled: An Ordinance

Prohibiting The Use Of Groundwater As A Potable Water Supply By The

Installation Or Use Of Potable Water Supply Wells Or By Any Other

Method was adopted by the Village Board of Trustees on

December 3, 2001 and approved by the Village President on

December 3, 2001. The ORDINANCE is available for public

inspection in the Office of the Village Clerk.

IN WITNESS WHEREOF I have set my hand and affixed

the seal of said Village of Oak Park this 11th day of December,

<u> 2001</u>.

Sandra Sokol

Village Clerk

Kathleen M. Cannon

Deputy Village Clerk

(seal)

AN ORDINANCE PROHIBITING THE USE OF GROUNDWATER AS A POTABLE WATER SUPPLY BY THE INSTALLATION OR USE OF POTABLE WATER SUPPLY WELLS OR BY ANY OTHER METHOD

WHEREAS, various properties throughout the Village of Oak Park, Illinois have been used over a period of time for commercial/industrial purposes or are near properties which have been so used; and

WHEREAS, because of said use, concentrations of certain chemical constituents in the groundwater beneath the Village of Oak Park may exceed Class I groundwater quality standards for potable resource groundwater as set forth in 35 Illinois

Administrative Code 620 or Tier 1 residential remediation objectives as set forth in 35

Illinois Administrative Code 742; and

WHERAS, the Village of Oak Park (hereinafter "the Village") desires to limit potential threats to human health from groundwater contamination while facilitating the redevelopment and productive use of properties that are the source of said chemical constituents;

NOW, THEREFORE, BE IT ORDAINED by the President and Board of Trustees of the Village of Oak Park, County of Cook, State of Illinois as follows:

SECTION ONE: ADOPTION OF FINDINGS.

The findings set forth hereinabove are incorporated herein and are made apart hereof.

SECTION TWO: USE OF GROUNDWATER AS A POTABLE WATER SUPPLY PROHIBITED.

The use or attempt to use as a potable water supply, groundwater from within the corporate limits of the Village of Oak Park, by the installation or drilling of wells or by

any other method is hereby prohibited, including at points of withdrawal by the Village of Oak Park.

SECTION THREE: VILLAGE PROHIBITION.

Except for the provisions contained in Section Four, all restrictions contained in this Ordinance shall be binding upon the Village of Oak Park, Illinois.

SECTION FOUR: PENALTIES.

Any person violating the provisions of this ordinance shall be subject to a fine of up to \$500.00 for each violation.

SECTION FIVE: DEFINITIONS.

"Person" is any individual, partnership, co-partnership, firm, company, limited liability company, corporation, association, joint stock company, trust, estate, political subdivision, or any other legal entity, or their legal representatives, agents, or assigns.

"Potable water" is any water used for human or domestic consumption, including, but not limited to, water used for drinking, bathing, swimming, washing dishes, or preparing foods.

SECTION SIX: REPEALER

All ordinances or parts of ordinances in conflict with this ordinance are hereby repealed insofar as they are in conflict with this ordinance.

SECTION SEVEN: SEVERABILITY.

If any provision of this ordinance or its application to any person or under any circumstances is adjudged invalid, such adjudication shall not affect the validity of the ordinance as a whole or of any portion not adjudged invalid.

SECTION EIGHT: EFFECTIVE DATE.

THIS ORDINANCE shall be in full force and effect from and after its passage, approval and publication as required by law.

ADOPTED this 3rd day of December, 2001, pursuant to a roll call vo.te as follows:

AYES:

Trustees Carpenter, Ebner, Gockel, Hodge-West, Kostopulos

and Turner and President Trapani

NAYS:

None

ABSENT: None

APPROVED by me this ____ 3rd __ day of __December, 2001

ATTEST: